A new approach for risk assessment of failure modes considering risk interaction and propagation effects

Author(s):  
Qun Wang ◽  
Guozhu Jia ◽  
Yuning Jia ◽  
Wenyan Song
1994 ◽  
Vol 57 (3) ◽  
pp. 95-98 ◽  
Author(s):  
Chris Iveson

A new approach to counselling, solution focused brief therapy, is based on assumptions of client well-being which are very close to those underlying the work of occupational therapists. Two cases, one of memory loss and one of suicide risk assessment, are used to illustrate the principles of brief therapy translated into everyday practice.


1996 ◽  
Vol 118 (1) ◽  
pp. 121-124 ◽  
Author(s):  
S. Quin ◽  
G. E. O. Widera

Of the quantitative approaches applied to inservice inspection, failure modes, effects,criticality analysis (FMECA) methodology is recommended. FMECA can provide a straightforward illustration of how risk can be used to prioritize components for inspection (ASME, 1991). But, at present, it has two limitations. One is that it cannot be used in the situation where components have multiple failure modes. The other is that it cannot be used in the situation where the uncertainties in the data of components have nonuniform distributions. In engineering practice, these two situations exist in many cases. In this paper, two methods based on fuzzy set theory are presented to treat these problems. The methods proposed here can be considered as a supplement to FMECA, thus extending its range of applicability.


2018 ◽  
Vol 25 (8) ◽  
pp. 2660-2687 ◽  
Author(s):  
Sachin Kumar Mangla ◽  
Sunil Luthra ◽  
Suresh Jakhar

PurposeThe purpose of this paper is to facilitate green supply chain (GSC) managers and planners to model and access GSC risks and probable failures. This paper proposes to use the fuzzy failure mode and effects analysis (FMEA) approach for assessing the risks associated with GSC for benchmarking the performance in terms of effective GSC management adoption and sustainable production.Design/methodology/approachInitially, different failure modes are defined using FMEA analysis, and in order to decide the risk priority, the risk priority number (RPN) is determined. Such priority numbers are typically acquired from the judgment decisions of experts that could contain the element of vagueness and imperfection due to human biases, and it may lead to inaccuracy in the process of risk assessment in GSC. In this study, fuzzy logic is applied to conventional FMEA to overcome the issues in assigning RPNs. A plastic manufacturer GSC case exemplar of the proposed model is illustrated to present the authenticity of this method of risk assessment.FindingsResults indicate that the failure modes, given as improper green operating procedure, i.e. process, operations, etc. (R6), and green issues while closing the loop of GSC (R14) hold the highest RPN and FRPN scores in classical as well as fuzzy FMEA analysis.Originality/valueThe present research work attempts to propose an evaluation framework for risk assessment in GSC. This paper explores both sustainable developments and risks related to efficient management of GSC initiatives in a plastic industry supply chain context. From a managerial perspective, suggestions are also provided with respect to each failure mode.


Author(s):  
Ekananta Manalif ◽  
Luiz Fernando Capretz ◽  
Danny Ho

Software development can be considered to be the most uncertain project when compared to other projects due to uncertainty in the customer requirements, the complexity of the process, and the intangible nature of the product. In order to increase the chance of success in managing a software project, the project manager(s) must invest more time and effort in the project planning phase, which involves such primary and integrated activities as effort estimation and risk management, because the accuracy of the effort estimation is highly dependent on the size and number of project risks in a particular software project. However, as is common practice, these two activities are often disconnected from each other and project managers have come to consider such steps to be unreliable due to their lack of accuracy. This chapter introduces the Fuzzy-ExCOM Model, which is used for software project planning and is based on fuzzy technique. It has the capability to not only integrate the effort estimation and risk assessment activities but also to provide information about the estimated effort, the project risks, and the effort contingency allowance necessary to accommodate the identified risk. A validation of this model using the project’s research data shows that this new approach is capable of improving the existing COCOMO estimation performance.


Sign in / Sign up

Export Citation Format

Share Document