Compound modeling of Earth rotation and possible implications for interaction of continents

2008 ◽  
Vol 49 (11) ◽  
pp. 851-858 ◽  
Author(s):  
V.P. Mel’nikov ◽  
I.I. Smul’skii ◽  
Ya.I. Smul’skii
2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Rüdiger Haas ◽  
Eskil Varenius ◽  
Saho Matsumoto ◽  
Matthias Schartner

AbstractWe present first results for the determination of UT1-UTC using the VLBI Global Observing System (VGOS). During December 2019 through February 2020, a series of 1 h long observing sessions were performed using the VGOS stations at Ishioka in Japan and the Onsala twin telescopes in Sweden. These VGOS-B sessions were observed simultaneously to standard legacy S/X-band Intensive sessions. The VGOS-B data were correlated, post-correlation processed, and analysed at the Onsala Space Observatory. The derived UT1-UTC results were compared to corresponding results from standard legacy S/X-band Intensive sessions (INT1/INT2), as well as to the final values of the International Earth Rotation and Reference Frame Service (IERS), provided in IERS Bulletin B. The VGOS-B series achieves 3–4 times lower formal uncertainties for the UT1-UTC results than standard legacy S/X-band INT series. The RMS agreement w.r.t. to IERS Bulletin B is slightly better for the VGOS-B results than for the simultaneously observed legacy S/X-band INT1 results, and the VGOS-B results have a small bias only with the smallest remaining standard deviation.


1988 ◽  
Vol 128 ◽  
pp. 399-404 ◽  
Author(s):  
Richard S. Gross

The effect on the Earth Rotation Parameters (ERP) of all the large earthquakes that occurred during 1977–1985 is evaluated. It is found that they cannot have caused the variations observed in the ERP during this time period.


1985 ◽  
Vol 38 (02) ◽  
pp. 216-217
Author(s):  
G. A. Wilkins

New techniques of measurement make it possible in 1984 to determine positions on the surface of the Earth to a much higher precision than was possible in 1884. If we look beyond the requirements of navigation we can see useful applications of global geodetic positioning to centimetric accuracy for such purposes as the control of mapping and the study of crustal movements. These new techniques depend upon observations of external objects, such as satellites or quasars rather than stars, and they require that the positions of these objects and the orientation of the surface of the Earth are both known with respect to an appropriate external reference system that is ‘fixed’ in space. We need networks of observing stations and analysis centres that monitor the motions of the external objects and the rotation of the Earth. Observations of stars by a transit circle are no longer adequate for this purpose.


Science ◽  
1922 ◽  
Vol 55 (1427) ◽  
pp. 478-479
Author(s):  
W. M. Davis
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document