onsala space observatory
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 10)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Vol 14 (8) ◽  
pp. 5593-5605
Author(s):  
Tong Ning ◽  
Gunnar Elgered

Abstract. We have used 1 year of multi-GNSS observations at the Onsala Space Observatory on the Swedish west coast to estimate the linear horizontal gradients in the wet propagation delay. The estimated gradients are compared to the corresponding ones from a microwave radiometer. We have investigated different temporal resolutions from 5 min to 1 d. Relative to the GPS-only solution and using an elevation cutoff angle of 10∘ and a temporal resolution of 5 min, the improvement obtained for the solution using GPS, Glonass, and Galileo data is an increase in the correlation coefficient of 11 % for the east gradient and 20 % for the north gradient. Out of all the different GNSS solutions, the highest correlation is obtained for the east gradients and a resolution of 2 h, while the best agreement for the north gradients is obtained for 6 h. The choice of temporal resolution is a compromise between getting a high correlation and the possibility of detecting rapid changes in the gradient. Due to the differences in geometry of the observations, gradients which happen suddenly are either not captured at all or captured but with much less amplitude by the GNSS data. When a weak constraint is applied in the estimation of process, the GNSS data have an improved ability to track large gradients, however, at the cost of increased formal errors.


2021 ◽  
Vol 95 (5) ◽  
Author(s):  
Eskil Varenius ◽  
Rüdiger Haas ◽  
Tobias Nilsson

AbstractWe present results from observation, correlation and analysis of interferometric measurements between the three geodetic very long baseline interferometry (VLBI) stations at the Onsala Space Observatory. In total, 25 sessions were observed in 2019 and 2020, most of them 24 h long, all using X band only. These involved the legacy VLBI station ONSALA60 and the Onsala twin telescopes, ONSA13NE and ONSA13SW, two broadband stations for the next-generation geodetic VLBI global observing system (VGOS). We used two analysis packages: $$\nu $$ ν Solve to pre-process the data and solve ambiguities, and ASCOT to solve for station positions, including modelling gravitational deformation of the radio telescopes and other significant effects. We obtained weighted root mean square post-fit residuals for each session on the order of 10–15 ps using group-delays and 2–5 ps using phase-delays. The best performance was achieved on the (rather short) baseline between the VGOS stations. As the main result of this work, we determined the coordinates of the Onsala twin telescopes in VTRF2020b with sub-millimetre precision. This new set of coordinates should be used from now on for scheduling, correlation, as a priori for data analyses, and for comparison with classical local-tie techniques. Finally, we find that positions estimated from phase-delays are offset $$\sim +3$$ ∼ + 3  mm in the up-component with respect to group-delays. Additional modelling of (elevation dependent) effects may contribute to the future understanding of this offset.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Rüdiger Haas ◽  
Eskil Varenius ◽  
Saho Matsumoto ◽  
Matthias Schartner

AbstractWe present first results for the determination of UT1-UTC using the VLBI Global Observing System (VGOS). During December 2019 through February 2020, a series of 1 h long observing sessions were performed using the VGOS stations at Ishioka in Japan and the Onsala twin telescopes in Sweden. These VGOS-B sessions were observed simultaneously to standard legacy S/X-band Intensive sessions. The VGOS-B data were correlated, post-correlation processed, and analysed at the Onsala Space Observatory. The derived UT1-UTC results were compared to corresponding results from standard legacy S/X-band Intensive sessions (INT1/INT2), as well as to the final values of the International Earth Rotation and Reference Frame Service (IERS), provided in IERS Bulletin B. The VGOS-B series achieves 3–4 times lower formal uncertainties for the UT1-UTC results than standard legacy S/X-band INT series. The RMS agreement w.r.t. to IERS Bulletin B is slightly better for the VGOS-B results than for the simultaneously observed legacy S/X-band INT1 results, and the VGOS-B results have a small bias only with the smallest remaining standard deviation.


2021 ◽  
Author(s):  
Rüdiger Haas ◽  
Eskil Varenius ◽  
Periklis-Konstantinos Diamantidis ◽  
Saho Matsumotu ◽  
Matthias Schartner ◽  
...  

<p>The VLBI Global Observing System (VGOS) is the VLBI contribution to GGOS. During the last years, several VGOS stations have been established, the VGOS observation program has started, and by 2021 VGOS has achieved an operational state involving nine international VGOS stations. Further VGOS stations are currently being installed, so that the number of active VGOS stations will increase drastically in the near future. In the end of 2019 the International VLBI Service for Geodesy and Astrometry (IVS) decided to start a new and so-far experimental VGOS-Intensive series, called VGOS-B, involving Ishioka (Japan) and Onsala (Sweden). Both sites operate modern VGOS stations with 13.2~m diameter radio telescopes, i.e. ISHIOKA (IS) in Japan, and ONSA13NE (OE) and ONSA13SW (OW) in Sweden. In total 12 VGOS-B sessions were observed between December 2019 and February 2020, one every week, in parallel and simultaneously to legacy S/X INT1 Intensive sessions that involve the stations KOKEE (KK) on Hawaii and WETTZELL (WZ) in Germany. These 1-hour long VGOS-B sessions consist of more than fifty radio source observations, resulting in about 1.6 TB of raw data that are collected at each station. The scheduling of the VGOS-B sessions was done using <em>VieSched++</em> and the subsequent steps (correlation, fringe-fitting, database creation) were carried out at the Onsala Space Observatory using <em>DIFX</em> and <em>HOPS</em>. The resulting VGOS databases were  analysed with several VLBI analysis software packages, involving <em>nuSolve</em>, <em>c5++</em> and <em>ASCOT</em>. In this presentation, we give an overview on the VGOS-B series, present our experiences, and discuss the obtained results. The derived UT1-UTC results were compared to corresponding results from standard legacy S/X Intensive sessions (INT1/INT2), as well to the final values of the International Earth Rotation and Reference Frame Service (IERS), provided in IERS Bulletin~B. <br>The VGOS-B series achieve 3-4 times lower formal uncertainties for the UT1-UTC results than standard legacy S/X INT series.  Furthermore, the root mean square (RMS) agreement with respect to the IERS Bulletin B is 30-40 % better for the VGOS-B results than for the INT1/INT2 results.</p>


2021 ◽  
Author(s):  
Eskil Varenius ◽  
Rüdiger Haas ◽  
Periklis Diamantidis ◽  
Tobias Nilsson

<p>A growing number of geodetic VLBI stations participate in the VLBI Global Observing System (VGOS). Multiple sites operate both new VGOS telescopes and legacy S/X VLBI telescopes. At Onsala Space Observatory, Sweden, we operate two 13.2 m diameter VGOS radio telescopes, ONSA13NE (OE) and ONSA13SW (OW), as well as the 20~m legacy S/X telescope ONSALA60 (ON). Transitioning from the legacy system and providing continuity of the terrestrial and celestial reference frames necessitate establishing ties between S/X and VGOS telescopes. Since spring 2019, we have carried out more than 20 short-baseline (550 m) interferometric observations at X-band to establish local-tie vectors between ON, OE and OW. The obtained data were correlated at Onsala Space Observatory using DiFX, post-processed using HOPS and analysed with nuSolve and ASCOT. In this presentation we given an overview of the observations, analysis, and results of these local-tie experiments. We investigate the impact of modeling e.g. gravitational deformation, and the possibility of using phase-delays to improve the precision. Finally, we present a comparison with preliminary results from two other methods: global mixed-mode observations and classical local-tie measurements.</p>


2020 ◽  
Author(s):  
Rüdiger Haas ◽  
Eskil Varenius ◽  
Saho Matsumoto ◽  
Matthias Schartner

Abstract We present rst results of UT1-UTC determinations using the VLBI Global Observing System (VGOS). During December 2019 through February 2020 a series of 1 hour long observing sessions were performed using the VGOS stations at Ishioka in Japan and the Onsala twin telescopes in Sweden. The data of this VGOS-B series were correlated, post-correlation processed, and analysed at the Onsala Space Observatory. The derived UT1-UTC results were compared to corresponding results from standard legacy S/X Intensive sessions (INT1/INT2), as well to the nal values of the International Earth Rotation and Reference Frame Service (IERS), provided in IERS Bulletin B. The VGOS-B series achieve 3-4 times lower formal uncertainties for the UT1-UTC results than standard legacy S/X INT series. Furthermore, the root mean square (RMS) agreement with respect to the IERS Bulletin B is 30-40 % better for the VGOS-B results than for the INT1/INT2 results.


2020 ◽  
Vol 94 (9) ◽  
Author(s):  
Hans-Georg Scherneck ◽  
Marcin Rajner ◽  
Andreas Engfeldt

AbstractTen-year worth of absolute gravity (AG) campaigns at Onsala Space Observatory (OSO), Sweden, are simultaneously reduced using synchronous data from a superconducting gravimeter (SG). In this multi-campaign adjustment, the a priori models commonly applied for each setup in AG-alone experiments are sidestepped in favour of SG records and a model to estimate its drift. We obtain a residual (hourly samples) at the 5 nm/s$$^2$$ 2 RMS level, reducing the SG data with a range of ancillary data for the site’s exposure to ocean and atmospheric loading, and hydrology effects. The target quantity in AG projects in the Baltic Shield area is the secular change of gravity dominated by glacial isostatic adjustment with land uplift as its major part. Investigating into the details of the associated processes using AG requires a long-term stable reference, which is the aim of international comparison campaigns of FG5 instruments. Two of these have been campaigning at OSO since 2009 when the SG had been installed. In the simultaneous inversion of all sixteen campaigns, we identify weaknesses of AG observations, like varying systematic offsets over time, excess microseismic sensitivity, trends in the AG data and side effects on the SG’s scale factor when campaigns are evaluated one by one. The simultaneous adjustment afforded us an SG scale factor very near the result from a campaign with a prototype quantum gravimeter. Whence, we propose that single-campaign results may be biased and conjectures into their variation, let alone its causes misleading. The OSO site appears to present manageable problems as far as environmental influences are concerned. Our findings advocate the use of AG instruments and procedures that are more long-term stable (reference realization), more short-term stable too (setup drifts), less service craving and more resilient to microseismic noise.


2020 ◽  
Author(s):  
Rüdiger Haas ◽  
Eskil Varenius ◽  
Grzegorz Klopotek ◽  
Periklis-Konstantinos Diamantidis ◽  
Saho Matsumoto ◽  
...  

<p>The VLBI Global Observing System (VGOS) is the VLBI contribution to GGOS. During the last years, several VGOS stations have been established, the VGOS observation program has started, and by 2020 VGOS has achieved an operational state involving eight international VGOS stations. Further VGOS stations are currently installed, so that the number of active VGOS stations will increase drastically in the near future. In the end of 2019 the International VLBI Service for Geodesy and Astrometry (IVS) decided to start a new and so-far experimental VGOS-Intensive series, called VGOS-B, involving Ishioka (Japan) and Onsala (Sweden). Both sites operate modern VGOS stations with 13.2 m diameter radio telescopes, i.e. ISHIOKA (IS) in Japan, and ONSA13NE (OE) and ONSA13SW (OW) in Sweden. In total 12 VGOS-B sessions were planned to be observed between December 2019 and February 2020, one every week, in parallel and simultaneously to legacy S/X INT1 Intensive sessions that involve the stations KOKEE (KK) on Hawaii and WETTZELL (WZ) in Germany. The 1-hour long VGOS-B sessions consist of more than fifty radio source observations, resulting in about 1.6 TB of raw data that are collected at each station. The scheduling of the VGOS-B sessions is done at Vienna University of Technology using <em>VieSched++</em> and the subsequent steps (correlation, fringe-fitting, database creation) are planned to be carried out at the Onsala Space Observatory using <em>DIFX</em> and <em>HOPS</em>. The resulting VGOS databases are planned to be analysed with several VLBI analysis software packages, involving <em>nuSolve</em>, <em>c5++</em> and <em>ivg::ASCOT</em>. In this presentation, we give an overview on the VGOS-B series, present our experiences, and discuss the obtained results.</p>


2019 ◽  
Vol 12 (7) ◽  
pp. 3805-3823
Author(s):  
Gunnar Elgered ◽  
Tong Ning ◽  
Peter Forkman ◽  
Rüdiger Haas

Abstract. We have studied linear horizontal gradients in the atmospheric propagation delay above ground-based stations receiving signals from the Global Positioning System (GPS). Gradients were estimated from 11 years of observations from five sites in Sweden. Comparing these gradients with the corresponding ones from the European Centre for Medium-Range Weather Forecasts (ECMWF) analyses shows that GPS gradients detect effects over different timescales caused by the hydrostatic and the wet components. The two stations equipped with microwave-absorbing material below the antenna, in general, show higher correlation coefficients with the ECMWF gradients compared to the other three stations. We also estimated gradients using 4 years of GPS data from two co-located antenna installations at the Onsala Space Observatory. Correlation coefficients for the east and the north wet gradients, estimated with a temporal resolution of 15 min from GPS data, can reach up to 0.8 for specific months when compared to simultaneously estimated wet gradients from microwave radiometry. The best agreement is obtained when an elevation cut-off angle of 3∘ is applied in the GPS data processing, in spite of the fact that the radiometer does not observe below 20∘. We also note a strong seasonal dependence in the correlation coefficients, from 0.3 during months with smaller gradients to 0.8 during months with larger gradients, typically during the warmer and more humid part of the year. Finally, a case study using a 15 d long continuous very-long-baseline interferometry (VLBI) campaign was carried out. The comparison of the gradients estimated from VLBI and GPS data indicates that a homogeneous and frequent sampling of the sky is a critical parameter.


Sign in / Sign up

Export Citation Format

Share Document