scholarly journals Late Cretaceous age of the Crucea uranium ore deposit, East Carpathians, Romania

2020 ◽  
Vol 1 ◽  
pp. 100002
Author(s):  
Emilie E. Bowman ◽  
Mihai N. Ducea ◽  
Lucian Petrescu
Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 116
Author(s):  
Yue Sun ◽  
Barry P. Kohn ◽  
Samuel C. Boone ◽  
Dongsheng Wang ◽  
Kaixing Wang

The Zhuguangshan complex hosts the main uranium production area in South China. We report (U-Th)/He and fission track thermochronological data from Triassic–Jurassic mineralized and non-mineralized granites and overlying Cambrian and Cretaceous sandstone units from the Lujing uranium ore field (LUOF) to constrain the upper crustal tectono-thermal evolution of the central Zhuguangshan complex. Two Cambrian sandstones yield reproducible zircon (U-Th)/He (ZHe) ages of 133–106 Ma and low effective uranium (eU) content (270–776 ppm). One Upper Cretaceous sandstone and seven Mesozoic granites are characterized by significant variability in ZHe ages (154–83 Ma and 167–36 Ma, respectively), which show a negative relationship with eU content (244–1098 ppm and 402–4615 ppm), suggesting that the observed age dispersion can be attributed to the effect of radiation damage accumulation on 4He diffusion. Correspondence between ZHe ages from sandstones and granites indicates that surrounding sedimentary rocks and igneous intrusions supplied sediment to the Cretaceous–Paleogene Fengzhou Basin lying adjacent to the LUOF. The concordance of apatite fission track (AFT) central ages (61–54 Ma) and unimodal distributions of confined track lengths of five samples from different rock units suggest that both sandstone and granite samples experienced a similar cooling history throughout the entire apatite partial annealing zone (~110–60 °C). Apatite (U-Th-Sm)/He (AHe) ages from six non-mineralized samples range from 67 to 19 Ma, with no apparent correlation to eU content (2–78 ppm). Thermal history modeling of data suggests that the LUOF experienced relatively rapid Early Cretaceous cooling. In most samples, this was followed by the latest Early Cretaceous–Late Cretaceous reheating and subsequent latest Late Cretaceous–Recent cooling to surface temperatures. This history is considered as a response to the transmission of far-field stresses, involving alternating periods of regional compression and extension, related to paleo-Pacific plate subduction and subsequent rollback followed by Late Paleogene–Recent India–Asia collision and associated uplift and eastward extrusion of the Tibetan Plateau. Thermal history models are consistent with the Fengzhou Basin having been significantly more extensive in the Late Cretaceous–Early Paleogene, covering much of the LUOF. Uranium ore bodies which may have formed prior to the Late Cretaceous may have been eroded by as much as ~1.2 to 4.8 km during the latest Late Cretaceous–Recent denudation.


1978 ◽  
Vol 44 (2) ◽  
pp. 307-315 ◽  
Author(s):  
I. Kobal ◽  
J. Kristan ◽  
M. Škofljanec ◽  
S. Jerančič ◽  
M. Ančik

2012 ◽  
Vol 621 ◽  
pp. 17-22 ◽  
Author(s):  
Zhi Qiang Kang ◽  
Zuo Hai Feng ◽  
Yong Gao Huang ◽  
Hong Yi Chen ◽  
Wei Fu ◽  
...  

Huashan granite-type uranium ore deposit is originated within the Huashan granite pluton in northeast of Guangxi, the mineral (mineralization) occurrences already found include Changchong, Baishijiao and Caomiping. Previous studies are relatively weak, especially in mineralogical characteristics, in this paper, a detailed study of minerals has been carried out through EPMA and EDS, the results show that the uranium mineral compositions of the three mineral (mineralization) occurrences are significantly different, but all of them are of secondary uranium minerals, among them, the main component of Changchong mineral (mineralization) occurrence is (meta-) autunite, of Baijiaoshi mineral (mineralization) occurrence is kasolite, and of Caomiping mineral (mineralization) occurrence is torbernite and zeunerite, which reflect the difference of their minerals sources.


2016 ◽  
Author(s):  
Joanna S. Denton ◽  
◽  
Steven J. Goldstein ◽  
Andrew J. Nunn ◽  
Kimberly A. Hinrichs ◽  
...  
Keyword(s):  

AMB Express ◽  
2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Pynskhem Bok Swer ◽  
Santa Ram Joshi ◽  
Celin Acharya
Keyword(s):  

1990 ◽  
Vol 212 ◽  
Author(s):  
Takashi Murakami ◽  
Hiroshi Isobe ◽  
Robert Edis

ABSTRACTThe relevance of alteration of chlorite, one of the major constituent minerals of the host rock to uranium ore at Koongarra, to the redistribution of uranium in the vicinity of the ore deposit has been examined. The chlorite alteration is produced by weathering; chlorite is transformed to vermiculite, through regularly interstratified chlorite/vermiculite. The Fe released from chlorite reprecipitates to form iron minerals, possibly ferrihydrite. Vermiculite is then replaced by kaolinite (and possibly smectite), further releasing Fe. On the millimeter scale, an alpha autoradiography study has shown that uranium concentrations are qualitatively proportional to the extent of the alteration; altered chlorite grains having higher uranium concentration. On the meter scale, the X-ray diffraction study has revealed that the abundances of chlorite, vermiculite, and kaolinite correspond well to the low, intermediate, and high uranium concentration zones, respectively. These suggest that the interaction of the uraniferous solution with chlorite causes the alteration of chlorite and the precipitation and sorption of uranium in the alteration products from the solution, and thus, the uranium migration is retarded at Koongarra.


Sign in / Sign up

Export Citation Format

Share Document