uranium migration
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 11)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Vol 56 ◽  
pp. 97-105
Author(s):  
Theresa Hennig ◽  
Michael Kühn

Abstract. The simulation of uranium migration through the Swiss Opalinus Clay is used as an example to quantify the influence of varying values of a stability constant in the underlying thermodynamic database on the migration lengths for the repository scale. Values for the stability constant of the neutral, ternary uranyl complex Ca2UO2(CO3)3 differ in literature by up to one order of magnitude. Within the studied geochemical system, either the neutral or the anionic complex CaUO2(CO3)32- is the predominant one, depending on the chosen value for the neutral complex. This leads to a changed interaction with the diffuse double layers (DDL) enveloping the clay minerals and thus can potentially influence the diffusive transport of uranium. Hence, two identical scenarios only differing in the value for the stability constant of the Ca2UO2(CO3)3 complex were applied in order to quantify and compare the migration lengths of uranium on the host rock scale (50 m) after a simulation time of one million years. We ran multi-component diffusion simulations for the shaly and sandy facies in the Opalinus Clay. A difference in the stability constant of 1.33 log units changes the migration lengths by 5 to 7 m for the sandy and shaly facies, respectively. The deviation is caused by the anion exclusion effect. However, with a maximum diffusion distance of 22 m, the influence of the stability constant of the Ca2UO2(CO3)3 complex on uranium migration in the Opalinus Clay is negligible on the host rock scale.


Minerals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1087
Author(s):  
Theresa Hennig ◽  
Michael Kühn

Transport properties of potential host rocks for nuclear waste disposal are typically determined in laboratory or in-situ experiments under geochemically controlled and constant conditions. Such a homogeneous assumption is no longer applicable on the host rock scale as can be seen from the pore water profiles of the potential host rock Opalinus Clay at Mont Terri (Switzerland). The embedding aquifers are the hydro-geological boundaries, that established gradients in the 210 m thick low permeable section through diffusive exchange over millions of years. Present-day pore water profiles were confirmed by a data-driven as well as by a conceptual scenario. Based on the modelled profiles, the influence of the geochemical gradient on uranium migration was quantified by comparing the distances after one million years with results of common homogeneous models. Considering the heterogeneous system, uranium migrated up to 24 m farther through the formation depending on the source term position within the gradient and on the partial pressure of carbon dioxide pCO2 of the system. Migration lengths were almost equal for single- and multicomponent diffusion. Differences can predominantly be attributed to changes in the sorption capacity, whereby pCO2 governs how strong uranium migration is affected by the geochemical gradient. Thus, the governing parameters for uranium migration in the Opalinus Clay can be ordered in descending priority: pCO2, geochemical gradients, mineralogical heterogeneity.


2021 ◽  
Vol 63 (4) ◽  
pp. 287-299
Author(s):  
V. N. Golubev ◽  
N. N. Tarasov ◽  
I. V. Chernyshev ◽  
A. V. Chugaev ◽  
G. V. Ochirova ◽  
...  

Abstract To assess the nature of the post-ore behaviour of uranium in the Namaru deposit (Khiagda ore field), U–Pb isotope systems and the isotopic composition of uranium (234U/238U and 238U/235U) were studied. The studied samples represent different ore zones of the deposit and were collected along cross-sections both vertically and horizontally. Wide variations in the isotopic composition of uranium and U–Pb isotopic age have been established. Deviations of the 234U/238U ratio from equilibrium values, which for some samples exceed 50%, along with significant variations in the isotopic age, indicate that permafrost layer, which covered the catchment areas of paleovalleys with meteoric oxygen-containing waters ca. 2.5 Ma ago, did not lead to preserving uranium ores at the deposit. Uranium migration took place during the Quaternary period. The effective combining the U–Pb dating and 234U/238U data in assessing the post-ore redistribution of uranium made it possible to recognize: removal of uranium from some zones of the ore body and its accompanying redeposition in others. Wide variations in the 238U/235U (137.484–137.851) ratios throughout the entire studied cross-sections can be explained by the different locations of samples relatively to the ore deposition front and change in redox conditions as this front advanced. Depletion of the light isotope 235U in the lower zone of the ore body may be associated with the influence of ascending carbonic waters established in the regional basement. The effect of such waters on uranium-bearing rocks causes predominant leaching of light 235U.


2021 ◽  
Author(s):  
Grigory Artemiev ◽  
Alexey Safonov ◽  
Nadezhda Popova

<p>Uranium migration in the oxidized environment of near-surface groundwater is a typical problem of many radiochemical, ore mining and ore processing enterprises that have sludge storage facilities on their territory. Uranium migration, as a rule, occurs against a high salt background due to the composition of the sludge: primarily, nitrate and sulfate anions and calcium cations. One of the ways to prevent the uranium pollution is geochemical or engineering barriers. For uranium immobilization, it is necessary to create conditions for its reduction to a slightly soluble form of uraninite and further mineralization, for example, in the phosphate form. An important factor contributing to the rapid reduction of uranium is a in the redox potential decreasing and the removal of nitrate ions, which can be achieved through the activation of microflora. It should be added that phosphate itself is one of the essential elements for the development of microflora. This work was carried out in relation to the upper aquifer (7-12 m) near the sludge storage facilities of ChMZ, which is engaged in uranium processing and enrichment. One of the problems of this aquifer, in addition to the high concentration of nitrate ions (up to 15 g / l), is the high velocity of formation waters.<br>In laboratory conditions, the compositions of injection solutions were selected containing sources of organic matter to stimulate the microbiota development and phosphates for uranium mineralization. When developing the injection composition, special attention was paid to assessing the formation of calcite deposits in aquifer conditions to partially reduce the filtration parameters of the horizon and reduce the rate of movement of formation waters. This must be achieved to ensure the possibility of long-term deposition of uranium and removal of nitrate. The composition of the optimal solution was selected and in a series of model experiments the mineral phases containing the lowest hydrated form of the uranium-containing phosphate mineral meta-otenite were obtained.<br>In situ mineral phosphate barrier Formation field tests were carried out in water horizon conditions in a volume of 100m3 by injection of an organic and phosphates mixture. As a result, at the first stage of field work, a significant decreasing nitrate ion concentration, and reducing conditions formation coupled with the dissolved uranium concentration of decreasing were noted.</p>


2021 ◽  
Author(s):  
Yuheng Wang ◽  
Yanru Liang ◽  
Cui Li ◽  
Peter Kopittke ◽  
David Paterson ◽  
...  

2019 ◽  
Vol 64 (6) ◽  
pp. 644-650
Author(s):  
A. V. Safonov ◽  
A. E. Boguslavskii ◽  
K. A. Boldyrev ◽  
L. V. Zayceva

This article presents data on the possible impact of aerobic and anaerobic microbiological processes in the upper aquifers to uranium migration t sulfate and nitrate polluted waters near to Novosibirsk chemical concentrate plant. Uranium immobilization is possible in local areas, with high content of organic substances and the most important microbiological process is the redox potential reduction due to aerobic respiration. After that in anaerobicс conditions redox-dependent uranium reduction can be expected. Moreover, in the presence of sulfate ions, further anaerobic processes of microbial sulfate reduction and iron reduction lead to the formation of iron sulphide, which plays the significant role of an antioxidant buffer in the case of oxygen migration.


2019 ◽  
Vol 15 ◽  
pp. 6138-6151
Author(s):  
Mostafa Niazy Tawfik ◽  
Sayed Fahmy Hassan ◽  
Osama Reyad Sallam ◽  
Nabil Zaki Kinawy

 ?-ray spectrometric survey shows many radioactive anomalies within the ferruginous siltstone of the lower Um Bogma Formation. The high average eU/eTh values indicate an addition of uranium (migration in) in both the two regions. The results obtained from field measurements show that the indoor annual effective dose in Ramlit Homayier and Heboush area are (48.71 mSv) and (19.70 mSv) respectively while that estimated by HPGE detector were (1.90 and 0.08 mSv). According to AEDE obtained, the dose delivered to each tissue is estimated and it reveals high dose risk to public derived from the exposure to subsurface NORM in Ramlet Homayier more than Heboush area for most body tissues Consequently staying in such levels of NORM requires a high caution and awareness to minimize the health risk accompanied to daily exposure of public and applying radiation protection principals to achieve a better safe working and living environment.


Sign in / Sign up

Export Citation Format

Share Document