scholarly journals The heterogeneous nucleation behavior of Al–Hf–P master alloy and its influence on the refinement of Mg2Si phase in Mg2Si/Al composites

2017 ◽  
Vol 7 ◽  
pp. 2012-2021 ◽  
Author(s):  
Min Zuo ◽  
Huimin Han ◽  
Dantong Wang ◽  
Degang Zhao ◽  
Yan Wang ◽  
...  
2018 ◽  
Vol 59 (12) ◽  
pp. 1949-1951 ◽  
Author(s):  
Mingqin Xu ◽  
Mingxu Xia ◽  
Qiaodan Hu ◽  
Jianguo Li

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2920
Author(s):  
Qin Peng ◽  
Bin Yang ◽  
Benjamin Milkereit ◽  
Dongmei Liu ◽  
Armin Springer ◽  
...  

Understanding the rapid solidification behavior characteristics, nucleation undercooling, and nucleation mechanism is important for modifying the microstructures and properties of metal alloys. In order to investigate the rapid solidification behavior in-situ, accurate measurements of nucleation undercooling and cooling rate are required in most rapid solidification processes, e.g., in additive manufacturing (AM). In this study, differential fast scanning calorimetry (DFSC) was applied to investigate the nucleation kinetics in a single micro-sized Al-20Si (mass%) particle under a controlled cooling rate of 5000 K/s. The nucleation rates of primary Si and secondary α-Al phases were calculated by a statistical analysis of 300 identical melting/solidification experiments. Applying a model based on the classical nucleation theory (CNT) together with available thermodynamic data, two different heterogeneous nucleation mechanisms of primary Si and secondary α-Al were proposed, i.e., surface heterogeneous nucleation for primary Si and interface heterogenous nucleation for secondary α-Al. The present study introduces a practical method for a detailed investigation of rapid solidification behavior of metal particles to distinguish surface and interface nucleation.


2013 ◽  
Vol 668 ◽  
pp. 865-869
Author(s):  
Wan Wu Ding ◽  
Wen Jun Zhao ◽  
Tian Dong Xia

The influence of different solidified velocities on the structure of pure aluminum during the process of refinement by Al-5Ti-0.6C master alloy was studied and the impact mechanism was discussed. The results show that at the same solidified velocity, with the increase of the amount of Al-5Ti-0.6C master alloy, in the solidified structure of pure aluminum, columnar crystals will gradually decrease, while equiaxed crystals will gradually increase. But in the case when the level of addition is the same, the faster the solidified velocity, the greater the number of equiaxed crystals will be in the ingot microstructure. The formation of equiaxed crystals is the result of the dual role of dissociation of crystal particles and heterogeneous nucleation of “TiC particle---Ti transition zone”.


2005 ◽  
Vol 475-479 ◽  
pp. 313-316
Author(s):  
Jian Guo Li ◽  
Min Huang ◽  
Zimu Shi ◽  
Dong Yu Liu

The AlTiC master alloy has been prepared in different components to refine 99.8%Al and 99.98%Al, then compared to two typical Al5Ti1B in refining efficiency and the grain nuclear. The result showed that the refining efficiency seemed better if the nucleation of high pure aluminum revealed complexity and variety. It may due to that the latency heterogeneous nucleation was efficient on the whole, consequently accelerated refining efficiency.


Sign in / Sign up

Export Citation Format

Share Document