Application of an edge detection method to satellite images for distinguishing sea surface temperature fronts near the Japanese coast

2005 ◽  
Vol 98 (1) ◽  
pp. 21-34 ◽  
Author(s):  
Teruhisa Shimada ◽  
Futoki Sakaida ◽  
Hiroshi Kawamura ◽  
Toshiaki Okumura
Respuestas ◽  
2020 ◽  
Vol 25 (3) ◽  
Author(s):  
Juan Guillermo Popayán-Hernández ◽  
Orlando Zúñiga-Escobar

This document estimated the behavior of the CO2 flux in the San Andrés Islas maritime for the first half of 2019. This behavior was established based on the thermodynamic relationship between the sea surface temperature, the partial pressures of CO2 in the atmosphere and the water column, this from data derived from remote sensors. The satellite data were derived from the MODIS aqua sensors and the MERRA model for sea surface temperature and wind speed respectively. Satellite images were obtained from NASA databases, subsequently processed and specialized in ArcGis 10.1. Finally, the behavior of the CO2 flux is shown for the San Andrés Islas maritime, finding that it does not have a tendency to capture CO2, so acidification processes are discarded for the selected study period.


1992 ◽  
Vol 30 (1) ◽  
pp. 166-176 ◽  
Author(s):  
Q.X. Wu ◽  
D. Pairman ◽  
S.J. McNeill ◽  
E.J. Barnes

Ocean Science ◽  
2021 ◽  
Vol 17 (6) ◽  
pp. 1545-1562
Author(s):  
Simon D. A. Thomas ◽  
Daniel C. Jones ◽  
Anita Faul ◽  
Erik Mackie ◽  
Etienne Pauthenet

Abstract. Oceanographic fronts are transitions between thermohaline structures with different characteristics. Such transitions are ubiquitous, and their locations and properties affect how the ocean operates as part of the global climate system. In the Southern Ocean, fronts have classically been defined using a small number of continuous, circumpolar features in sea surface height or dynamic height. Modern observational and theoretical developments are challenging and expanding this traditional framework to accommodate a more complex view of fronts. Here, we present a complementary new approach for calculating fronts using an unsupervised classification method called Gaussian mixture modelling (GMM) and a novel inter-class parameter called the I-metric. The I-metric approach produces a probabilistic view of front location, emphasising the fact that the boundaries between water masses are not uniformly sharp across the entire Southern Ocean. The I-metric approach uses thermohaline information from a range of depth levels, making it more general than approaches that only use near-surface properties. We train the GMM using an observationally constrained state estimate in order to have more uniform spatial and temporal data coverage. The probabilistic boundaries defined by the I-metric roughly coincide with several classically defined fronts, offering a novel view of this structure. The I-metric fronts appear to be relatively sharp in the open ocean and somewhat diffuse near large topographic features, possibly highlighting the importance of topographically induced mixing. For comparison with a more localised method, we also use an edge detection approach for identifying fronts. We find a strong correlation between the edge field of the leading principal component and the zonal velocity; the edge detection method highlights the presence of jets, which are supported by thermal wind balance. This more localised method highlights the complex, multiscale structure of Southern Ocean fronts, complementing and contrasting with the more domain-wide view offered by the I-metric. The Sobel edge detection method may be useful for defining and tracking smaller-scale fronts and jets in model or reanalysis data. The I-metric approach may prove to be a useful method for inter-model comparison, as it uses the thermohaline structure of those models instead of tracking somewhat ad hoc values of sea surface height and/or dynamic height, which can vary considerably between models. In addition, the general I-metric approach allows front definitions to shift with changing temperature and salinity structures, which may be useful for characterising fronts in a changing climate.


Sign in / Sign up

Export Citation Format

Share Document