A multi-scale approach for modeling fire occurrence probability using satellite data and classification trees: A case study in a mountainous Mediterranean region

2008 ◽  
Vol 112 (3) ◽  
pp. 708-719 ◽  
Author(s):  
F. Javier Lozano ◽  
S. Suárez-Seoane ◽  
M. Kelly ◽  
E. Luis
Author(s):  
K Ramakrishna Kini ◽  
Muddu Madakyaru

AbstractThe task of fault detection is crucial in modern chemical industries for improved product quality and process safety. In this regard, data-driven fault detection (FD) strategy based on independent component analysis (ICA) has gained attention since it improves monitoring by capturing non-gaussian features in the process data. However, presence of measurement noise in the process data degrades performance of the FD strategy since the noise masks important information. To enhance the monitoring under noisy environment, wavelet-based multi-scale filtering is integrated with the ICA model to yield a novel multi-scale Independent component analysis (MSICA) FD strategy. One of the challenges in multi-scale ICA modeling is to choose the optimum decomposition depth. A novel scheme based on ICA model parameter estimation at each depth is proposed in this paper to achieve this. The effectiveness of the proposed MSICA-based FD strategy is illustrated through three case studies, namely: dynamic multi-variate process, quadruple tank process and distillation column process. In each case study, the performance of the MSICA FD strategy is assessed for different noise levels by comparing it with the conventional FD strategies. The results indicate that the proposed MSICA FD strategy can enhance performance for higher levels of noise in the data since multi-scale wavelet-based filtering is able to de-noise and capture efficient information from noisy process data.


Author(s):  
Masakazu Hashimoto ◽  
Kenji Kawaike ◽  
Tomonori Deguchi ◽  
Shammi Haque ◽  
Arpan Paul ◽  
...  

2015 ◽  
Vol 36 (3) ◽  
pp. 308-323 ◽  
Author(s):  
Panchagnula Manjusree ◽  
Chandra Mohan Bhatt ◽  
Asiya Begum ◽  
Goru Srinivasa Rao ◽  
Veerubhotla Bhanumurthy

Axioms ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 102
Author(s):  
Maya Briani ◽  
Emiliano Cristiani ◽  
Paolo Ranut

In this paper, we propose two models describing the dynamics of heavy and light vehicles on a road network, taking into account the interactions between the two classes. The models are tailored for two-lane highways where heavy vehicles cannot overtake. This means that heavy vehicles cannot saturate the whole road space, while light vehicles can. In these conditions, the creeping phenomenon can appear, i.e., one class of vehicles can proceed even if the other class has reached the maximal density. The first model we propose couples two first-order macroscopic LWR models, while the second model couples a second-order microscopic follow-the-leader model with a first-order macroscopic LWR model. Numerical results show that both models are able to catch some second-order (inertial) phenomena such as stop and go waves. Models are calibrated by means of real data measured by fixed sensors placed along the A4 Italian highway Trieste–Venice and its branches, provided by Autovie Venete S.p.A.


2018 ◽  
Vol 630 ◽  
pp. 444-452 ◽  
Author(s):  
Junqiang Yao ◽  
Yong Zhao ◽  
Yaning Chen ◽  
Xiaojing Yu ◽  
Ruibo Zhang
Keyword(s):  

Forestist ◽  
2021 ◽  
Author(s):  
Francisco Javier Sahagún-Sánchez ◽  
◽  
Abril Joaquina Méndez-García ◽  
Francisco Martín Huerta-Martínez ◽  
Marco Antonio Espinoza-Guzmán ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document