Environmental monitoring and assessment: A multi-scale and multiparameter case study in Campania Region (S Italy) on the recreational seawater quality evaluation

2020 ◽  
Vol 39 ◽  
pp. 101465
Author(s):  
Massimiliano Lega ◽  
John Kosmatka ◽  
Marco Casazza ◽  
Lucio De Maio ◽  
Davide Severino ◽  
...  
2021 ◽  
Author(s):  
Benedetto De Vivo ◽  
Stefano Albanese ◽  
Annamaria Lima ◽  
Domenico Cicchella ◽  
David Hope ◽  
...  

Author(s):  
K Ramakrishna Kini ◽  
Muddu Madakyaru

AbstractThe task of fault detection is crucial in modern chemical industries for improved product quality and process safety. In this regard, data-driven fault detection (FD) strategy based on independent component analysis (ICA) has gained attention since it improves monitoring by capturing non-gaussian features in the process data. However, presence of measurement noise in the process data degrades performance of the FD strategy since the noise masks important information. To enhance the monitoring under noisy environment, wavelet-based multi-scale filtering is integrated with the ICA model to yield a novel multi-scale Independent component analysis (MSICA) FD strategy. One of the challenges in multi-scale ICA modeling is to choose the optimum decomposition depth. A novel scheme based on ICA model parameter estimation at each depth is proposed in this paper to achieve this. The effectiveness of the proposed MSICA-based FD strategy is illustrated through three case studies, namely: dynamic multi-variate process, quadruple tank process and distillation column process. In each case study, the performance of the MSICA FD strategy is assessed for different noise levels by comparing it with the conventional FD strategies. The results indicate that the proposed MSICA FD strategy can enhance performance for higher levels of noise in the data since multi-scale wavelet-based filtering is able to de-noise and capture efficient information from noisy process data.


Author(s):  
Masakazu Hashimoto ◽  
Kenji Kawaike ◽  
Tomonori Deguchi ◽  
Shammi Haque ◽  
Arpan Paul ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Monika Jurkeviciute ◽  
Amia Enam ◽  
Johanna Torres-Bonilla ◽  
Henrik Eriksson

Abstract Background Summative eHealth evaluations frequently lack quality, which affects the generalizability of the evidence, and its use in practice and further research. To guarantee quality, a number of activities are recommended in the guidelines for evaluation planning. This study aimed to examine a case of an eHealth evaluation planning in a multi-national and interdisciplinary setting and to provide recommendations for eHealth evaluation planning guidelines. Methods An empirical eHealth evaluation process was developed through a case study. The empirical process was compared with selected guidelines for eHealth evaluation planning using a pattern-matching technique. Results Planning in the interdisciplinary and multi-national team demanded extensive negotiation and alignment to support the future use of the evidence created. The evaluation planning guidelines did not provide specific strategies for different set-ups of the evaluation teams. Further, they did not address important aspects of quality evaluation, such as feasibility analysis of the outcome measures and data collection, monitoring of data quality, and consideration of the methods and measures employed in similar evaluations. Conclusions Activities to prevent quality problems need to be incorporated in the guidelines for evaluation planning. Additionally, evaluators could benefit from guidance in evaluation planning related to the different set-ups of the evaluation teams.


Axioms ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 102
Author(s):  
Maya Briani ◽  
Emiliano Cristiani ◽  
Paolo Ranut

In this paper, we propose two models describing the dynamics of heavy and light vehicles on a road network, taking into account the interactions between the two classes. The models are tailored for two-lane highways where heavy vehicles cannot overtake. This means that heavy vehicles cannot saturate the whole road space, while light vehicles can. In these conditions, the creeping phenomenon can appear, i.e., one class of vehicles can proceed even if the other class has reached the maximal density. The first model we propose couples two first-order macroscopic LWR models, while the second model couples a second-order microscopic follow-the-leader model with a first-order macroscopic LWR model. Numerical results show that both models are able to catch some second-order (inertial) phenomena such as stop and go waves. Models are calibrated by means of real data measured by fixed sensors placed along the A4 Italian highway Trieste–Venice and its branches, provided by Autovie Venete S.p.A.


2021 ◽  
Vol 36 (9) ◽  
pp. 2350
Author(s):  
Si-nan LI ◽  
Xiao-qing ZHAO ◽  
Jun-wei PU ◽  
Qian WANG ◽  
Pei-pei MIAO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document