A dorsiventral leaf radiative transfer model: Development, validation and improved model inversion techniques

2009 ◽  
Vol 113 (12) ◽  
pp. 2560-2573 ◽  
Author(s):  
Jan Stuckens ◽  
Willem W. Verstraeten ◽  
Stephanie Delalieux ◽  
Rony Swennen ◽  
Pol Coppin
2015 ◽  
Vol 15 (6) ◽  
pp. 3007-3020 ◽  
Author(s):  
R. Loughman ◽  
D. Flittner ◽  
E. Nyaku ◽  
P. K. Bhartia

Abstract. The Gauss–Seidel limb scattering (GSLS) radiative transfer (RT) model simulates the transfer of solar radiation through the atmosphere and is imbedded in the retrieval algorithm used to process data from the Ozone Mapping and Profiler Suite (OMPS) limb profiler (LP), which was launched on the Suomi NPP satellite in October 2011. A previous version of this model has been compared with several other limb scattering RT models in previous studies, including Siro, MCC++, CDIPI, LIMBTRAN, SASKTRAN, VECTOR, and McSCIA. To address deficiencies in the GSLS radiance calculations revealed in earlier comparisons, several recent changes have been added that improve the accuracy and flexibility of the GSLS model, including 1. improved treatment of the variation of the extinction coefficient with altitude, both within atmospheric layers and above the nominal top of the atmosphere; 2. addition of multiple-scattering source function calculations at multiple solar zenith angles along the line of sight (LOS); 3. introduction of variable surface properties along the limb LOS, with minimal effort required to add variable atmospheric properties along the LOS as well; 4. addition of the ability to model multiple aerosol types within the model atmosphere. The model improvements 1 and 2 are verified by comparison to previously published results (using standard radiance tables whenever possible), demonstrating significant improvement in cases for which previous versions of the GSLS model performed poorly. The single-scattered radiance errors that were as high as 4% in earlier studies are now generally reduced to 0.3%, while total radiance errors generally decline from 10% to 1–3%. In all cases, the tangent height dependence of the GSLS radiance error is greatly reduced.


2018 ◽  
Vol 215 ◽  
pp. 97-108 ◽  
Author(s):  
Marco Celesti ◽  
Christiaan van der Tol ◽  
Sergio Cogliati ◽  
Cinzia Panigada ◽  
Peiqi Yang ◽  
...  

2008 ◽  
Vol 52 ◽  
pp. 13-18
Author(s):  
Hui LU ◽  
Toshio KOIKE ◽  
Hiroyuki TSUTSUI ◽  
David Ndegwa KURIA ◽  
Tobias GRAF ◽  
...  

2006 ◽  
Vol 45 (10) ◽  
pp. 1388-1402 ◽  
Author(s):  
Andrew K. Heidinger ◽  
Christopher O’Dell ◽  
Ralf Bennartz ◽  
Thomas Greenwald

Abstract This study, the first part of a two-part series, develops the method of “successive orders of interaction” (SOI) for a computationally efficient and accurate solution for radiative transfer in the microwave spectral region. The SOI method is an iterative approximation to the traditional adding and doubling method for radiative transfer. Results indicate that the approximations made in the SOI method are accurate for atmospheric layers with scattering properties typical of those in the infrared and microwave regions. In addition, an acceleration technique is demonstrated that extends the applicability of the SOI approach to atmospheres with greater amounts of scattering. A comparison of the SOI model with a full Monte Carlo model using the atmospheric profiles given by Smith et al. was used to determine the optimal parameters for the simulation of microwave top-of-atmosphere radiances. This analysis indicated that a four-stream model with a maximum initial-layer optical thickness of approximately 0.01 was optimal. In the second part of this series, the accuracies of the SOI model and its adjoint are demonstrated over a wide range of microwave remote sensing scenarios.


Sign in / Sign up

Export Citation Format

Share Document