scholarly journals Multi-decadal analysis of high-resolution albedo changes induced by urbanization over contrasted Chinese cities based on Landsat data

2022 ◽  
Vol 269 ◽  
pp. 112832
Author(s):  
Tianci Guo ◽  
Tao He ◽  
Shunlin Liang ◽  
Jean-Louis Roujean ◽  
Yuyu Zhou ◽  
...  
2021 ◽  
Vol 13 (22) ◽  
pp. 4674
Author(s):  
Yuqing Qin ◽  
Jie Su ◽  
Mingfeng Wang

The formation and distribution of melt ponds have an important influence on the Arctic climate. Therefore, it is necessary to obtain more accurate information on melt ponds on Arctic sea ice by remote sensing. The present large-scale melt pond products, especially the melt pond fraction (MPF), still require verification, and using very high resolution optical satellite remote sensing data is a good way to verify the large-scale retrieval of MPF products. Unlike most MPF algorithms using very high resolution data, the LinearPolar algorithm using Sentinel-2 data considers the albedo of melt ponds unfixed. In this paper, by selecting the best band combination, we applied this algorithm to Landsat 8 (L8) data. Moreover, Sentinel-2 data, as well as support vector machine (SVM) and iterative self-organizing data analysis technique (ISODATA) algorithms, are used as the comparison and verification data. The results show that the recognition accuracy of the LinearPolar algorithm for melt ponds is higher than that of previous algorithms. The overall accuracy and kappa coefficient results achieved by using the LinearPolar algorithm with L8 and Sentinel-2A (S2), the SVM algorithm, and the ISODATA algorithm are 95.38% and 0.88, 94.73% and 0.86, and 92.40%and 0.80, respectively, which are much higher than those of principal component analysis (PCA) and Markus algorithms. The mean MPF (10.0%) obtained from 80 cases from L8 data based on the LinearPolar algorithm is much closer to Sentinel-2 (10.9%) than the Markus (5.0%) and PCA algorithms (4.2%), with a mean MPF difference of only 0.9%, and the correlation coefficients of the two MPFs are as high as 0.95. The overall relative error of the LinearPolar algorithm is 53.5% and 46.4% lower than that of the Markus and PCA algorithms, respectively, and the root mean square error (RMSE) is 30.9% and 27.4% lower than that of the Markus and PCA algorithms, respectively. In the cases without obvious melt ponds, the relative error is reduced more than that of those with obvious melt ponds because the LinearPolar algorithm can identify 100% of dark melt ponds and relatively small melt ponds, and the latter contributes more to the reduction in the relative error of MPF retrieval. With a wider range and longer time series, the MPF from Landsat data are more efficient than those from Sentinel-2 for verifying large-scale MPF products or obtaining long-term monitoring of a fixed area.


2014 ◽  
Vol 11 (2) ◽  
pp. 459-463 ◽  
Author(s):  
Dongdong Wang ◽  
Shunlin Liang ◽  
Tao He

2020 ◽  
Author(s):  
Wenzhong Shi ◽  
Chengzhuo Tong ◽  
Anshu Zhang ◽  
Bin Wang ◽  
Zhicheng Shi ◽  
...  

Abstract It is important to forecast the risk of COVID-19 symptom onset and thereby evaluate how effectively the city lockdown measure could reduce this risk. This study is a first comprehensive, high-resolution investigation of spatiotemporal heterogeneities in the effect of the Wuhan lockdown on the risk of COVID-19 symptom onset in all 347 Chinese cities. An extended Weight Kernel Density Estimation model was developed to predict the COVID-19 onset risk under two scenarios (i.e., with and without Wuhan lockdown). The Wuhan lockdown, compared with the scenario without lockdown implementation, delayed the arrival of the COVID-19 onset risk peak for 1-2 days in general and lowered risk peak values among all cities. The decrease of the onset risk attributed to the lockdown was more than 8% in over 40% of Chinese cities, and up to 21.3% in some cities. Lockdown was the most effective in areas with medium risk before lockdown.


2019 ◽  
Vol 242 ◽  
pp. 994-1009 ◽  
Author(s):  
Bofeng Cai ◽  
Huanxiu Guo ◽  
Zipeng Ma ◽  
Zhixuan Wang ◽  
Shobhakar Dhakal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document