A review of thermal energy storage designs, heat storage materials and cooking performance of solar cookers with heat storage

2017 ◽  
Vol 75 ◽  
pp. 157-167 ◽  
Author(s):  
Lameck Nkhonjera ◽  
Tunde Bello-Ochende ◽  
Geoffrey John ◽  
Cecil K. King’ondu
2020 ◽  
Vol 22 (8) ◽  
pp. 4617-4625 ◽  
Author(s):  
Julianne E. Bird ◽  
Terry D. Humphries ◽  
Mark Paskevicius ◽  
Lucas Poupin ◽  
Craig E. Buckley

The thermal transport properties of potential thermal energy storage materials have been measured using identical conditions enabling direct comparison.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Amir Al-Ahmed ◽  
Ahmet Sarı ◽  
Mohammad Abu Jafar Mazumder ◽  
Gökhan Hekimoğlu ◽  
Fahad A. Al-Sulaiman ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5981
Author(s):  
Gianluca Coccia ◽  
Alessia Aquilanti ◽  
Sebastiano Tomassetti ◽  
Pio Francesco Muciaccia ◽  
Giovanni Di Di Nicola

Sugar alcohols have interesting thermodynamic properties that make them good options as heat storage materials (HSMs) to be used in solar cookers. Among sugar alcohols, xylitol is affected by severe supercooling that can significantly alter its usefulness in thermal energy storage (TES) systems. To overcome the supercooling issue, in this work the thermal behavior of a xylitol-based TES installed in a portable solar box cooker was investigated experimentally. The solar cooker has a 4.08 concentration ratio and the TES is a double-pot system filled with 2.5 kg of commercial-grade xylitol. The TES includes a manual mixing device that can be used to trigger the nucleation of xylitol. The effectiveness of the TES system with and without triggering was assessed through several outdoor tests, divided into heating and cooling phases, using silicone oil as absorbing media. It was found that the average load cooling time, in the temperature range of the test fluid from 110 to 80∘C, increased by about 346% when the solar cooker was equipped with the xylitol-triggered TES. The mixing device can therefore be considered an effective solution for regarding xylitol as an actual and performing phase change material.


2019 ◽  
Author(s):  
Karolina Matuszek ◽  
R. Vijayaraghavan ◽  
Craig Forsyth ◽  
Surianarayanan Mahadevan ◽  
Mega Kar ◽  
...  

Renewable energy has the ultimate capacity to resolve the environmental and scarcity challenges of the world’s energy supplies. However, both the utility of these sources and the economics of their implementation are strongly limited by their intermittent nature; inexpensive means of energy storage therefore needs to be part of the design. Distributed thermal energy storage is surprisingly underdeveloped in this context, in part due to the lack of advanced storage materials. Here, we describe a novel family of thermal energy storage materials based on pyrazolium cation, that operate in the 100-220°C temperature range, offering safe, inexpensive capacity, opening new pathways for high efficiency collection and storage of both solar-thermal energy, as well as excess wind power. We probe the molecular origins of the high thermal energy storage capacity of these ionic materials and demonstrate extended cycling that provides a basis for further scale up and development.


2021 ◽  
Vol 11 (11) ◽  
pp. 4848
Author(s):  
Hitoshi Kiyokawa ◽  
Hiroki Tokutomi ◽  
Shinichi Ishida ◽  
Hiroaki Nishi ◽  
Ryo Ohmura

Kinetic characteristics of thermal energy storage (TES) using tetrabutylammonium acrylate (TBAAc) hydrate were experimentally evaluated for practical use as PCMs. Mechanical agitation or ultrasonic vibration was added to detach the hydrate adhesion on the heat exchanger, which could be a thermal resistance. The effect of the external forces also was evaluated by changing their rotation rate and frequency. When the agitation rate was 600 rpm, the system achieved TES density of 140 MJ/m3 in 2.9 hours. This value is comparable to the ideal performance of ice TES when its solid phase fraction is 45%. UA/V (U: thermal transfer coefficient, A: surface area of the heat exchange coil, V: volume of the TES medium) is known as an index of the ease of heat transfer in a heat exchanger. UA/V obtained in this study was comparable to that of other common heat exchangers, which means the equivalent performance would be available by setting the similar UA/V. In this study, we succeeded in obtaining practical data for heat storage by TBAAc hydrate. The data obtained in this study will be a great help for the practical application of hydrate heat storage in the future.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3129
Author(s):  
Jewon Oh ◽  
Daisuke Sumiyoshi ◽  
Masatoshi Nishioka ◽  
Hyunbae Kim

The mass introduction of renewable energy is essential to reduce carbon dioxide emissions. We examined an operation method that combines the surplus energy of photovoltaic power generation using demand response (DR), which recognizes the balance between power supply and demand, with an aquifer heat storage system. In the case that predicts the occurrence of DR and performs DR storage and heat dissipation operation, the result was an operation that can suppress daytime power consumption without increasing total power consumption. Case 1-2, which performs nighttime heat storage operation for about 6 h, has become an operation that suppresses daytime power consumption by more than 60%. Furthermore, the increase in total power consumption was suppressed by combining DR heat storage operation. The long night heat storage operation did not use up the heat storage amount. Therefore, it is recommended to the heat storage operation at night as much as possible before DR occurs. In the target area of this study, the underground temperature was 19.1 °C, the room temperature during cooling was about 25 °C and groundwater could be used as the heat source. The aquifer thermal energy storage (ATES) system in this study uses three wells, and consists of a well that pumps groundwater, a heat storage well that stores heat and a well that used heat and then returns it. Care must be taken using such an operation method depending on the layer configuration.


Sign in / Sign up

Export Citation Format

Share Document