scholarly journals Experimental Analysis of Nucleation Triggering in a Thermal Energy Storage Based on Xylitol Used in a Portable Solar Box Cooker

Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5981
Author(s):  
Gianluca Coccia ◽  
Alessia Aquilanti ◽  
Sebastiano Tomassetti ◽  
Pio Francesco Muciaccia ◽  
Giovanni Di Di Nicola

Sugar alcohols have interesting thermodynamic properties that make them good options as heat storage materials (HSMs) to be used in solar cookers. Among sugar alcohols, xylitol is affected by severe supercooling that can significantly alter its usefulness in thermal energy storage (TES) systems. To overcome the supercooling issue, in this work the thermal behavior of a xylitol-based TES installed in a portable solar box cooker was investigated experimentally. The solar cooker has a 4.08 concentration ratio and the TES is a double-pot system filled with 2.5 kg of commercial-grade xylitol. The TES includes a manual mixing device that can be used to trigger the nucleation of xylitol. The effectiveness of the TES system with and without triggering was assessed through several outdoor tests, divided into heating and cooling phases, using silicone oil as absorbing media. It was found that the average load cooling time, in the temperature range of the test fluid from 110 to 80∘C, increased by about 346% when the solar cooker was equipped with the xylitol-triggered TES. The mixing device can therefore be considered an effective solution for regarding xylitol as an actual and performing phase change material.

2019 ◽  
Vol 111 ◽  
pp. 01100
Author(s):  
Rok Koželj ◽  
Žiga Ahčin ◽  
Eva Zavrl ◽  
Uroš Stritih

One of the great challenges in the energy sector represents retrofit of residential buildings where 3/4 of buildings in Europe are residential. To reduce energy consumption and increase the use of renewables in existing residential buildings a holistic approach of retrofit with interconnected technological system is needed. In the present paper energy toolkit based on the synergetic interaction between technologies integrated in the system for holistic retrofit of residential buildings which is under development within HEART project (HORIZON 2020) is presented. In this project step towards self-sufficient heating and cooling of building is made with an increase in on-site consumption of self-produced energy in PV from solar energy, where produced electrical energy is used also for heat pump operation. In this case thermal energy storage plays an important role for storing heat or cold for time when solar energy is not available. Improvement of sensible thermal energy storage with implemented cylindrical modules at the top of the heat storage tank and filled with phase change material is investigated experimentally. 43 litres of paraffin with phase change temperature between 27 °C and 29 °C was used in a system, what represented 15 % of total volume of heat storage tank. The results from experiment shows that thermal energy storage unit with integrated modules filled with phase change material can supply desired level of water temperature for twice as long at smaller temperature level as sensible thermal energy storage what is the consequence of higher energy density that can be stored during phase change. The advantage of phase change materials is in thermal energy storage for applications that needs narrow temperature range of supplying and storing thermal energy what is the subject matter of consideration in the case of HEART project.


2012 ◽  
Vol 134 (1) ◽  
Author(s):  
R. A. Wirtz ◽  
K. Swanson ◽  
M. Yaquinto

An important design objective that is unique to hand-held units is the need to constrain two temperatures: the maximum temperature of the electronic components and the maximum skin temperature of the hand-held unit. The present work identifies and evaluates, through parametric modeling and experiments, the passive thermal energy storage volume characteristics and phase change material composite properties that are most suitable for thermal control of small form-factor, high power-density, hand-held electronics. A one-dimensional transient analytical model, based on an integral heat balance, is formulated and benchmarked. The model accurately simulates the heat storage/recovery process in a semi-infinite, “dry” phase change material slab. Dimensional analysis identifies the time and temperature metrics and nondimensional parameters that describe the heat storage/release process. Parametric analysis illustrates how changes in these nondimensional parameters affect thermal energy storage volume thermal response.


2020 ◽  
Vol 22 (8) ◽  
pp. 4617-4625 ◽  
Author(s):  
Julianne E. Bird ◽  
Terry D. Humphries ◽  
Mark Paskevicius ◽  
Lucas Poupin ◽  
Craig E. Buckley

The thermal transport properties of potential thermal energy storage materials have been measured using identical conditions enabling direct comparison.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Amir Al-Ahmed ◽  
Ahmet Sarı ◽  
Mohammad Abu Jafar Mazumder ◽  
Gökhan Hekimoğlu ◽  
Fahad A. Al-Sulaiman ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5024
Author(s):  
Xiaoling Cui ◽  
Xiaoyun Du ◽  
Yanzhou Cao ◽  
Guochen Sang ◽  
Yangkai Zhang ◽  
...  

Efficient use of solar energy by thermal energy storage composites and utilizing environmentally friendly cementitious materials are important trends for sustainable building composite materials. In this study, a paraffin/low density polyethylene (LDPE) composite shape-stabilized phase change material (SSPCM) was prepared and incorporated into a sulphoaluminate cement (SAC) mortar to prepare thermal energy storage mortar. The thermal and mechanical properties of SSPCM and a SAC-based thermal energy storage material (SCTESM) were investigated. The result of differential scanning calorimeter (DSC) analysis indicates that the latent heat of SCTESM is as high as 99.99 J/g. Thermogravimetric analysis demonstrates that the SCTESM does not show significant decomposition below 145 °C. The volume stability test shows the volume shrinkage percentage of the SCTESM is less than that of pure SAC mortar and far less than that of ordinary Portland cement mortar. The SCTESM has high early strength so that the compressive strength at 1-, 3-, and 7-day curing age is up to that at 28-day curing age of 67.5%, 78.3%, and 86.7%, respectively. Furthermore, a mathematical prediction model of the SCTESM compressive strength was proposed. The investigation of latent heat storage characteristics and the thermoregulating performance reveals that SCTESMs have the excellent capacity of heat storage and thermoregulating.


2000 ◽  
Author(s):  
Bing-Chwen Yang ◽  
Shr-Hau Huang ◽  
Hsiang-Hui Lin

Abstract In this paper, the feasibility of phase change material that used for thermal energy storage in the range of 400 ∼ 600°C in the form of latent heat is examined for nine different salts and eutectic salts. The Differential Scanning Calorimeter (DSC) was used to perform the quantitative measurement of the phase change temperature (Tm) and latent heat (ΔH). The thermal properties of NaCl-CaCl2 at repeated heating and cooling cycles were studied with a heating chamber. The quality observation for this phase change material was also performed with this heating chamber to understand its physical phenomena during heating and cooling process. It is found that NaCl-CaCl2 is a good candidate of thermal energy storage material for its stable properties, low cost, and no toxic. Finally, the thermal storage unit with NaCl-CaCl2 as thermal energy storage material was tested to study and evaluate its performance as the application in the waste heat recovery system.


2020 ◽  
Vol 22 (16) ◽  
pp. 5447-5462 ◽  
Author(s):  
Maryam Roza Yazdani ◽  
Jarkko Etula ◽  
Julie Beth Zimmerman ◽  
Ari Seppälä

Glass-transition and cold-crystallization of a sugar alcohol phase change material dispersed within ionic citrate cross-linked polyvinyl alcohol enable long-term heat storage.


ROTASI ◽  
2016 ◽  
Vol 18 (3) ◽  
pp. 76 ◽  
Author(s):  
Muhammad Nadjib

Pemanas Air Tenaga Matahari (PATM) konvensional umumnya menggunakan air sebagai penyimpan energi termal. Pemakaian sensible heat storage (SHS) ini memiliki kekurangan, diantaranya adalah densitas energinya rendah. Di sisi lain, latent heat storage (LHS) mempunyai sifat khas yaitu densitas energinya tinggi karena melibatkan perubahan fasa dalam penyerapan atau pelepasan kalor. Material LHS sering disebut phase change material (PCM). Penggunaan PCM pada PATM menarik dilakukan untuk meningkatkan densitas energi sistem. Penelitian ini bertujuan untuk menyelidiki perilaku termal penggunaan paraffin wax di dalam tangki PATM jenis thermosyphon. Penelitian menggunakan kolektor matahari pelat datar dan tangki thermal energy storage (TES) yang dipasang secara horisontal di sisi atas kolektor. Di dalam tangki terdapat alat penukar kalor yang terdiri dari sekumpulan pipa kapsul dimana di dalamnya berisi paraffin wax. Air digunakan sebagai SHS dan heat transfer fluid (HTF). Termokopel dipasang di sisi HTF dan sisi PCM. Piranometer dan sensor temperatur udara luar diletakkan di dekat kolektor matahari. Pengambilan data dilakukan selama proses charging. Temperatur HTF, PCM dan intensitas radiasi matahari direkam setiap 30 detik. Data ini digunakan untuk mengetahui evolusi temperatur HTF dan PCM. Berdasarkan evolusi temperatur ini kemudian dianalisis perilaku termal PATM. Hasil dari penelitian ini adalah bahwa paraffin wax telah berfungsi sebagai penyimpan energi termal bersama air di dalam tangki PATM jenis thermosyphon. PCM memberi kontribusi yang cukup signifikan terhadap kapasitas penyimpanan energi sistem. Efisiensi kolektor lebih optimal karena PCM dapat mempertahankan stratifikasi termal sampai akhir charging. Adanya PCM mampu mengendalikan penurunan efisiensi pengumpulan energi saat intensitas radiasi matahari menurun. Alat penukar kalor yang digunakan cukup efektif yang ditandai dengan kecepatan pemanasan rata-rata antara HTF dan PCM yang tidak berbeda jauh.


Sign in / Sign up

Export Citation Format

Share Document