Integrated building life-cycle assessment model to support South Korea's green building certification system (G-SEED)

2017 ◽  
Vol 76 ◽  
pp. 43-50 ◽  
Author(s):  
Nayoon Lee ◽  
Sungho Tae ◽  
Yuri Gong ◽  
Seungjun Roh
2019 ◽  
Vol 111 ◽  
pp. 03061 ◽  
Author(s):  
Michaela Lambertz ◽  
Sebastian Theißen ◽  
Jannick Höper ◽  
Reinhard Wimmer

The new Energy Performance of Buildings Directive (EPBD) 2018 and the GebäudeEnergieGesetz (GEG) tightened the requirements for energy efficiency and the use of renewable energy sources in buildings at EU and national levels. Environmental impacts from manufacturing, dismantling and recycling of buildings are not taken into account. Green Building Certification Systems, such as the DGNB or BNB systems, are therefore the only ones that (voluntarily) set holistic, ecological requirements for buildings. Based on a Whole-Building Life Cycle Assessment, the entire building life cycle and its environmental effects are evaluated. While building services in this context are usually only included in such a simplified approach, the full scope of the produced environmental impacts are underestimated and misjudged for the reduction of emissions and other environmental impacts. This publication uses the results of a life cycle assessment of a typical office building (in Germany) to show the amount of influence building services have on environmental impacts of buildings. Furthermore the study shows an approach how the very high pro-curement and calculation effort of LCA can be reduced by linking the Building Information Modelling (BIM) Method and LCA models to enable a significantly more efficient and easier calculation process, es-pecially for building services.


2019 ◽  
Vol 8 (3) ◽  
pp. 190-205
Author(s):  
Barbara X. Rodriguez ◽  
Kathrina Simonen ◽  
Monica Huang ◽  
Catherine De Wolf

Purpose The purpose of this paper is to present an analysis of common parameters in existing tools that provide guidance to carry out Whole Building Life Cycle Assessment (WBLCA) and proposes a new taxonomy, a catalogue of parameters, for the definition of the goal and scope (G&S) in WBLCA. Design/methodology/approach A content analysis approach is used to identify, code and analyze parameters in existing WBLCA tools. Finally, a catalogue of parameters is organized into a new taxonomy. Findings In total, 650 distinct parameter names related to the definition of G&S from 16 WBLCAs tools available in North America, Europe and Australia are identified. Building on the analysis of existing taxonomies, a new taxonomy of 54 parameters is proposed in order to describe the G&S of WBLCA. Research limitations/implications The analysis of parameters in WBLCA tools does not include Green Building Rating Systems and is only limited to tools available in English. Practical implications This research is crucial in life cycle assessment (LCA) method harmonization and to serve as a stepping stone to the identification and categorization of parameters that could contribute to WBLCA comparison necessary to meet current global carbon goals. Social implications The proposed taxonomy enables architecture, engineering and construction practitioners to contribute to current WBLCA practice. Originality/value A study of common parameters in existing tools contributes to identifying the type of data that is required to describe buildings and contribute to build a standardized framework for LCA reporting, which would facilitate consistency across future studies and can serve as a checklist for practitioners when conducting the G&S stage of WBLCA.


Author(s):  
M. von der Thannen ◽  
S. Hoerbinger ◽  
C. Muellebner ◽  
H. Biber ◽  
H. P. Rauch

AbstractRecently, applications of soil and water bioengineering constructions using living plants and supplementary materials have become increasingly popular. Besides technical effects, soil and water bioengineering has the advantage of additionally taking into consideration ecological values and the values of landscape aesthetics. When implementing soil and water bioengineering structures, suitable plants must be selected, and the structures must be given a dimension taking into account potential impact loads. A consideration of energy flows and the potential negative impact of construction in terms of energy and greenhouse gas balance has been neglected until now. The current study closes this gap of knowledge by introducing a method for detecting the possible negative effects of installing soil and water bioengineering measures. For this purpose, an environmental life cycle assessment model has been applied. The impact categories global warming potential and cumulative energy demand are used in this paper to describe the type of impacts which a bioengineering construction site causes. Additionally, the water bioengineering measure is contrasted with a conventional civil engineering structure. The results determine that the bioengineering alternative performs slightly better, in terms of energy demand and global warming potential, than the conventional measure. The most relevant factor is shown to be the impact of the running machines at the water bioengineering construction site. Finally, an integral ecological assessment model for applications of soil and water bioengineering structures should point out the potential negative effects caused during installation and, furthermore, integrate the assessment of potential positive effects due to the development of living plants in the use stage of the structures.


Sign in / Sign up

Export Citation Format

Share Document