Dwelling infiltration and heating energy demand in multifamily high-rise and low-energy buildings in Korea

2021 ◽  
Vol 148 ◽  
pp. 111284
Author(s):  
Juhyun Bak ◽  
Sungmin Yoon
2019 ◽  
Vol 158 ◽  
pp. 3658-3663
Author(s):  
Adorkor Bruce-Konuah ◽  
Rory V. Jones ◽  
Alba Fuertes ◽  
Pieter de Wilde

2014 ◽  
Vol 899 ◽  
pp. 62-65 ◽  
Author(s):  
Rastislav Ingeli ◽  
Boris Vavrovič ◽  
Miroslav Čekon

Energy demand reduction in buildings is an important measure to achieve climate change mitigation. It is essential to minimize heat losses in designing phase in accordance of building energy efficiency. For building energy efficiency in a mild climate zone, a large part of the heating demand is caused by transmission losses through the building envelope. Building envelopes with high thermal resistance are typical for low-energy buildings in general. In this sense thermal bridges impact increases by using of greater thickness of thermal insulation. This paper is focused on thermal bridges minimizing through typical system details in buildings. The impact of thermal bridges was studied by comparative calculations for a case study of building with different amounts of thermal insulation. The calculated results represent a percentage distribution of heat loss through typical building components in correlation of various thicknesses of their thermal insulations.


2020 ◽  
Vol 172 ◽  
pp. 08006
Author(s):  
Martin Kiil ◽  
Martin-Sven Käärid ◽  
Paul Klõšeiko ◽  
Karl-Villem Võsa ◽  
Raimo Simson ◽  
...  

This study analyses the effect of air circulation around diagonal tie connectors in precast sandwich panels on heating energy demand, energy performance value and heating costs of a sample residential building. Dynamic simulations were performed using 4 different climatic boundary conditions: Estonian test reference year, Estonian 48-year weather dataset as well as data from Eastern Germany and Northern Finland. The results show that the effect of the thermal bridge is most noticeable in total room heating energy demand (increase of 10.3%), while the influence on energy performance value was 1.1%. The relative increase of total room heating energy demand was similar (7.0-10.3%) in all studied climatic regions.


2019 ◽  
Vol 116 ◽  
pp. 109469 ◽  
Author(s):  
Silvia Guillén-Lambea ◽  
Beatriz Rodríguez-Soria ◽  
José M. Marín

Author(s):  
Krzysztof Pawłowski ◽  
Magdalena Nakielska ◽  
Dariusz Buchaniec

In order to achieve the standard of a low energy building it is needed to define the energy characteristics of the building with t-aiming at the minimal value of primary energy demand factor EP. The analysis of a building for energy saving concerns thermal parameters of external heat partitions, central heating installation efficiency, ventilation and hot water installation as well as using renewable energy sources. In this work there is an analysis of selected factors affecting PE factor in existing and new-designed buildings and there are valuable practical conclusions formulated.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 715
Author(s):  
Cristina Andrade ◽  
Sandra Mourato ◽  
João Ramos

Climate change is expected to influence cooling and heating energy demand of residential buildings and affect overall thermal comfort. Towards this end, the heating (HDD) and cooling (CDD) degree-days along with HDD + CDD were computed from an ensemble of seven high-resolution bias-corrected simulations attained from EURO-CORDEX under two Representative Concentration Pathways (RCP4.5 and RCP8.5). These three indicators were analyzed for 1971–2000 (from E-OBS) and 2011–2040, and 2041–2070, under both RCPs. Results predict a decrease in HDDs most significant under RCP8.5. Conversely, it is projected an increase of CDD values for both scenarios. The decrease in HDDs is projected to be higher than the increase in CDDs hinting to an increase in the energy demand to cool internal environments in Portugal. Statistically significant linear CDD trends were only found for 2041–2070 under RCP4.5. Towards 2070, higher(lower) CDD (HDD and HDD + CDD) anomaly amplitudes are depicted, mainly under RCP8.5. Within the five NUTS II


Encyclopedia ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. 20-29
Author(s):  
Alejandro Moreno-Rangel

Passivhaus or Passive House buildings are low-energy buildings in which the design is driven by quality and comfort, hence achieving acceptable levels of comfort through post-heating or post-cooling of fresh air. Additionally, Passivhaus building design follows the Passivhaus design criteria, as described in the Passive House Planning Package (PHPP). This article aims to introduce the Passivhaus background, development, and basic design principles. Finally, it also presents a brief description of the performance of Passivhaus buildings.


Sign in / Sign up

Export Citation Format

Share Document