Resistance mechanisms and farm-level distribution of fecal Escherichia coli isolates resistant to extended-spectrum cephalosporins in pigs in Spain

2010 ◽  
Vol 88 (1) ◽  
pp. 83-87 ◽  
Author(s):  
E. Escudero ◽  
L. Vinué ◽  
T. Teshager ◽  
C. Torres ◽  
M.A. Moreno
2021 ◽  
Vol 12 ◽  
Author(s):  
Razib Mazumder ◽  
Arif Hussain ◽  
Ahmed Abdullah ◽  
Md. Nazrul Islam ◽  
Md. Tuhin Sadique ◽  
...  

Background:Escherichia coli is a major extended-spectrum β-lactamase (ESBL)–producing organism responsible for the rapid spread of antimicrobial resistance (AMR) that has compromised our ability to treat infections. Baseline data on population structure, virulence, and resistance mechanisms in E. coli lineages from developing countries such as Bangladesh are lacking.Methods: Whole-genome sequencing was performed for 46 ESBL–E. coli isolates cultured from patient samples at the International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b)-Dhaka. Sequence data were analyzed to glean details of AMR, virulence, and phylogenetic and molecular markers of E. coli lineages.Results: Genome comparison revealed presence of all major high-risk clones including sequence type 131 (ST131) (46%), ST405 (13%), ST648 (7%), ST410 (4.3%), ST38 (2%), ST73 (2%), and ST1193 (2%). The predominant ESBL gene and plasmid combination were blaCTX–M–15 and FII-FIA-FIB detected in diverse E. coli phylogroups and STs. The blaNDM–5 (9%) gene was present in prominent E. coli STs. One (2%) mcr-1–positive ST1011 E. coli, coharboring blaCTXM–55 gene, was detected. The extraintestinal pathogenic E. coli genotype was associated with specific E. coli lineages. The single nucleotide polymorphism (SNP)-based genome phylogeny largely showed correlation with phylogroups, serogroups, and fimH types. Majority of these isolates were susceptible to amikacin (93%), imipenem (93%), and nitrofurantoin (83%).Conclusion: Our study reveals a high diversity of E. coli lineages among ESBL-producing E. coli from Dhaka. This study suggests ongoing circulation of ST131 and all major non-ST131 high-risk clones that are strongly associated with cephalosporin resistance and virulence genes. These findings warrant prospective monitoring of high-risk clones, which would otherwise worsen the AMR crises.


2008 ◽  
Vol 52 (4) ◽  
pp. 1238-1243 ◽  
Author(s):  
Annemieke Smet ◽  
An Martel ◽  
Davy Persoons ◽  
Jeroen Dewulf ◽  
Marc Heyndrickx ◽  
...  

ABSTRACT A total of 295 ceftiofur-resistant Escherichia coli isolates were obtained from 489 cloacal samples collected at five different Belgian broiler farms with the aim to evaluate the diversity of this resistance at the farm level. Strains were examined for resistance against β-lactam antibiotics and other antimicrobial agents by using disk diffusion tests. Three different β-lactam resistance phenotypes suggested the presence of an extended-spectrum β-lactamase (ESBL), a class C β-lactamase, or the combination of an ESBL with a class C β-lactamase. Seventy-six percent of these isolates also showed acquired resistance to other antimicrobial agents. After genotyping by repetitive extragenic palindromic-PCR, 51 unrelated E. coli strains were selected for further analyses. Isoelectric focusing and sequencing of the amplicons obtained in PCRs for the detection of genes encoding broad-spectrum β-lactamase enzymes revealed the following ESBLs: TEM-52 (13.2%), TEM-106 (2%), CTX-M-1 (27.4%), CTX-M-2 (7.8%), CTX-M-14 (5.9%), and CTX-M-15 (2%). The only plasmidic AmpC β-lactamase found in this study was the CMY-2 enzyme (49%). Mutations in the promoter and attenuator regions of the chromosomal ampC gene were found only in association with bla CMY-2 genes and ESBL genes. The combination of an ESBL (CTX-M-1) with a plasmidic AmpC β-lactamase (CMY-2) was found in 7.8% of the isolates. These data show that ceftiofur-resistant E. coli strains are often present in cloacal samples of broilers at the farm level in Belgium. The diversity of broad-spectrum β-lactamases among these isolates is high, and they may act as a reservoir of ESBL and ampC genes.


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 850
Author(s):  
Shobha Giri ◽  
Vaishnavi Kudva ◽  
Kalidas Shetty ◽  
Veena Shetty

As the global urban populations increase with rapid migration from rural areas, ready-to-eat (RTE) street foods are posing food safety challenges where street foods are prepared with less structured food safety guidelines in small and roadside outlets. The increased presence of extended-spectrum-β-lactamase (ESBL) producing bacteria in street foods is a significant risk for human health because of its epidemiological significance. Escherichia coli and Klebsiella pneumoniae have become important and dangerous foodborne pathogens globally for their relevance to antibiotic resistance. The present study was undertaken to evaluate the potential burden of antibiotic-resistant E. coli and K. pneumoniae contaminating RTE street foods and to assess the microbiological quality of foods in a typical emerging and growing urban suburb of India where RTE street foods are rapidly establishing with public health implications. A total of 100 RTE food samples were collected of which, 22.88% were E. coli and 27.12% K. pneumoniae. The prevalence of ESBL-producing E. coli and K. pneumoniae was 25.42%, isolated mostly from chutneys, salads, paani puri, and chicken. Antimicrobial resistance was observed towards cefepime (72.9%), imipenem (55.9%), cefotaxime (52.5%), and meropenem (16.9%) with 86.44% of the isolates with MAR index above 0.22. Among β-lactamase encoding genes, blaTEM (40.68%) was the most prevalent followed by blaCTX (32.20%) and blaSHV (10.17%). blaNDM gene was detected in 20.34% of the isolates. This study indicated that contaminated RTE street foods present health risks to consumers and there is a high potential of transferring multi-drug-resistant bacteria from foods to humans and from person to person as pathogens or as commensal residents of the human gut leading to challenges for subsequent therapeutic treatments.


Sign in / Sign up

Export Citation Format

Share Document