scholarly journals Use of electrodeposition to realise the crack-healing and pore-filling of weathered rock: A small specimen case

2022 ◽  
Vol 62 (1) ◽  
pp. 101100
Author(s):  
Hitoshi Matsubara ◽  
Kosumo Kamimura
Author(s):  
J.M. Cowley

The HB5 STEM instrument at ASU has been modified previously to include an efficient two-dimensional detector incorporating an optical analyser device and also a digital system for the recording of multiple images. The detector system was built to explore a wide range of possibilities including in-line electron holography, the observation and recording of diffraction patterns from very small specimen regions (having diameters as small as 3Å) and the formation of both bright field and dark field images by detection of various portions of the diffraction pattern. Experience in the use of this system has shown that sane of its capabilities are unique and valuable. For other purposes it appears that, while the principles of the operational modes may be verified, the practical applications are limited by the details of the initial design.


Author(s):  
Sudeep M. Rao ◽  
Joshua Samuel ◽  
Sai S. Prakash ◽  
C. Jeffrey Brinker

Ambient pressure silica aerogel thin films have recently been prepared by exploiting reversible drying shrinkage caused by derivatization of the internal gel surface. Aerogels have porosities of upto 99.9% and due to the small size of the pores (few nanometers), large capillary stresses are produced in gels that are partially saturated with a wetting liquid. As a result of these capillary stresses, the flexible silica network undergoes strain which has been observed using environmental microscopy. This technique allows variation of the equilibrium vapor pressure and temperature, and a simultaneous monitoring of the deformation of the unconstrained film thickness. We have observed >600% deformation during the pore-filling and pore-emptying cycles. In this presentation, we discuss the unique stress-strain behavior of these films.Ref.: Sai S. Prakash, C. Jeffrey Brinker, Alan J. Hurd & Sudeep M. Rao, "Silica aerogel films prepared at ambient pressure by using surface derivatization to induce reversible drying shrinkage", Nature. Vol. 374, 30 March, 1995, 439-443.


2021 ◽  
Vol 120 ◽  
pp. 104055
Author(s):  
Muhammad Basit Ehsan Khan ◽  
Luming Shen ◽  
Daniel Dias-da-Costa

2021 ◽  
Vol 47 (10) ◽  
pp. 14551-14560
Author(s):  
Shuai Zhang ◽  
Guangchun Xiao ◽  
Zhaoqiang Chen ◽  
Lianggang Ji ◽  
Chonghai Xu ◽  
...  

2016 ◽  
Vol 113 ◽  
pp. 989-994 ◽  
Author(s):  
Tao Yu ◽  
Dewei Deng ◽  
Gang Wang ◽  
Hongchao Zhang

2021 ◽  
Vol 39 ◽  
pp. 102291
Author(s):  
Berivan Yılmazer Polat ◽  
Mucteba Uysal
Keyword(s):  

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1205
Author(s):  
Alejandro Orsikowsky-Sanchez ◽  
Christine Franke ◽  
Alexander Sachse ◽  
Eric Ferrage ◽  
Sabine Petit ◽  
...  

A set of three commercial zeolites (13X, 5A, and 4A) of two distinct shapes have been characterized: (i) pure zeolite powders and (ii) extruded spherical beads composed of pure zeolite powders and an unknown amount of binder used during their preparation process. The coupling of gas porosimetry experiments using argon at 87 K and CO2 at 273 K allowed determining both the amount of the binder and its effect on adsorption properties. It was evidenced that the beads contain approximately 25 wt% of binder. Moreover, from CO2 adsorption experiments at 273 K, it could be inferred that the binder present in both 13X and 5A zeolites does not interact with the probe molecule. However, for the 4A zeolite, pore filling pressures were shifted and strong interaction with CO2 was observed leading to irreversible adsorption of the probe. These results have been compared to XRD, IR spectroscopy, and ICP-AES analysis. The effect of the binder in shaped zeolite bodies can thus have a crucial impact on applications in adsorption and catalysis.


Author(s):  
Julija Kazakeviciute ◽  
James Paul Rouse ◽  
Davide Focatiis ◽  
Christopher Hyde

Small specimen mechanical testing is an exciting and rapidly developing field in which fundamental deformation behaviours can be observed from experiments performed on comparatively small amounts of material. These methods are particularly useful when there is limited source material to facilitate a sufficient number of standard specimen tests, if any at all. Such situations include the development of new materials or when performing routine maintenance/inspection studies of in-service components, requiring that material conditions are updated with service exposure. The potentially more challenging loading conditions and complex stress states experienced by small specimens, in comparison with standard specimen geometries, has led to a tendency for these methods to be used in ranking studies rather than for fundamental material parameter determination. Classifying a specimen as ‘small’ can be subjective, and in the present work the focus is to review testing methods that utilise specimens with characteristic dimensions of less than 50 mm. By doing this, observations made here will be relevant to industrial service monitoring problems, wherein small samples of material are extracted and tested from operational components in such a way that structural integrity is not compromised. Whilst recently the majority of small specimen test techniques development have focused on the determination of creep behaviour/properties as well as sub-size tensile testing, attention is given here to small specimen testing methods for determining specific tensile, fatigue, fracture and crack growth properties. These areas are currently underrepresented in published reviews. The suitability of specimens and methods is discussed here, along with associated advantages and disadvantages.


2020 ◽  
pp. 0958305X2097728
Author(s):  
Jiyeon Choi ◽  
Dong-Ik Slong ◽  
Won Sik Shin

This study investigated the sorption of phenol and 4-chlorophenol (4-CP) on natural bentonite modified with hexadecyltrimethylammonium (HDTMA) cation. The Freundlich, Langmuir, Dubinin−Radushkevich (DR), Sips, and Polanyi−Dubinin−Manes (PDM) models fitted the sorption data well (R2 > 0.92). The Freundlich coefficient and the maximum sorbed amount of the Langmuir and PDM models of 4-CP were higher than phenol because of higher hydrophobicity (log Kow = 2.39 for 4-CP and 1.46 for phenol). The PDM model that includes solubility and molar volume was highly useful in predicting the sorption of phenols having widely different hydrophobicity and solubility. The characteristic curves, the plot of sorbed volume ( qv) versus the sorption potential per molar volume ( ε/ Vm) of 4-CP and phenol were distinctly different although they have similar chemical compositions. The selectivity of 4-CP (3.72) was higher than that of phenol (0.27) in binary sorption systems. The sorbed volume ( qv) in the binary sorption was remarkably reduced and the characteristic curve had wider distribution owing to competition in pore-filling. The sorption behaviors were elucidated by partitioning and pore-filling mechanisms. Among the tested binary sorption models, the modified Langmuir competitive model was the best in the prediction of the binary sorption (R2 > 0.98).


Sign in / Sign up

Export Citation Format

Share Document