scholarly journals The current excitement about copy-number variation: how it relates to gene duplications and protein families

2008 ◽  
Vol 18 (3) ◽  
pp. 366-374 ◽  
Author(s):  
Jan O Korbel ◽  
Philip M Kim ◽  
Xueying Chen ◽  
Alexander Eckehart Urban ◽  
Sherman Weissman ◽  
...  
2021 ◽  
Author(s):  
Luzia Stalder ◽  
Ursula Oggenfuss ◽  
Norfarhan Mohd-Assaad ◽  
Daniel Croll

ABSTRACTMicrobial pathogens can rapidly adapt to changing environments such as the application of pesticides or host resistance. Copy number variations (CNV) are a major source of adaptive genetic variation for recent adaptation. Here, we analyze how a major fungal pathogen of barley, Rhynchosporium commune, has adapted to host environment, fungicide and temperature challenges. We screen the genomes of 126 isolates sampled across a worldwide set of populations and identify a total of 7’879 gene duplications and 116 gene deletions. Most gene duplications result from segmental chromosomal duplications. We find that genes showing recent gains or losses are enriched in functions related to host exploitation (i.e. effectors and cell wall degrading enzymes). We perform a phylogeny-informed genome-wide association study (GWAS) and identify 191 copy-number variants associated with different pathogenesis and temperature related traits, including a large segmental duplication of CYP51A that has contributed to the emergence of azole resistance. Additionally, we use a genome-wide SNP dataset to replicate the GWAS and contrast it with the CNV-focused analysis. We find that frequencies of adaptive CNV alleles show high variation among populations for traits under strong selection such as fungicide resistance. In contrast, adaptive CNV alleles underpinning temperature adaptation tend to be near fixation. Finally, we show that transposable elements are important drivers of recent gene copy-number variation. Loci showing signatures of recent positive selection are enriched in miniature inverted repeat transposons. Our findings show how extensive segmental duplications create the raw material for recent adaptation in global populations of a fungal pathogen.


2015 ◽  
Vol 76 (S 01) ◽  
Author(s):  
Georgios Zenonos ◽  
Peter Howard ◽  
Maureen Lyons-Weiler ◽  
Wang Eric ◽  
William LaFambroise ◽  
...  

BIOCELL ◽  
2018 ◽  
Vol 42 (3) ◽  
pp. 87-91 ◽  
Author(s):  
Sergio LAURITO ◽  
Juan A. CUETO ◽  
Jimena PEREZ ◽  
Mar韆 ROQU�

2016 ◽  
Vol 117 (3) ◽  
pp. 383-388 ◽  
Author(s):  
Ellen Geets ◽  
Doreen Zegers ◽  
Sigri Beckers ◽  
An Verrijken ◽  
Guy Massa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document