gene copy number variation
Recently Published Documents


TOTAL DOCUMENTS

100
(FIVE YEARS 33)

H-INDEX

23
(FIVE YEARS 2)

2022 ◽  
Vol 12 ◽  
Author(s):  
Lang Yang ◽  
Hong He ◽  
Qichao Chen ◽  
Kaiying Wang ◽  
Yanfeng Lin ◽  
...  

NDM-1-producing multidrug-resistant Proteus mirabilis brings formidable clinical challenges. We report a nosocomial outbreak of carbapenem-resistant P. mirabilis in China. Six P. mirabilis strains collected in the same ward showed close phylogenetic relatedness, indicating clonal expansion. Illumina and MinION sequencing revealed that three isolates harbored a novel Salmonella genomic island 1 carrying a blaNDM–1 gene (SGI1-1NDM), while three other isolates showed elevated carbapenem resistance and carried a similar SGI1 but with two blaNDM–1 gene copies (SGI1-2NDM). Four new single nucleotide mutations were present in the genomes of the two-blaNDM–1-harboring isolates, indicating later emergence of the SGI1-2NDM structure. Passage experiments indicated that both SGI variants were stably persistent in this clone without blaNDM–1 copy number changes. This study characterizes two novel blaNDM–1-harboring SGI1 variants in P. mirabilis and provides a new insight into resistance gene copy number variation in bacteria.


Author(s):  
Luz H Patiño ◽  
Marina Muñoz ◽  
Paula Pavia ◽  
Carlos Muskus ◽  
Maryia Shaban ◽  
...  

Abstract Insufficient and irregular data reports on Leishmaniasis, issuing from the developing world, have left much to be desired in terms of understanding the molecular signatures producing distinct infectious phenotypes of the disease. Herein, we report on the complete genome sequencing of Leishmania naiffi and Leishmania guyanensis, sampled from patients in regions of Colombia and Venezuela. In this study, the isolates of cutaneous lesions from both species presented limited structural variation at the chromosomal level, low gene copy number variation, and high genetic heterogeneity. We compared these sequences to the reference genomes hitherto related from Brazil and French Guyana. Although of the same species, we note a consequential genomic disparity between the Venezuelan and French Guyanese isolates of L. guyanensis. Although less significant on the global schema of cutaneous and mucosal disease, such genomic studies of L. naiffi and L. guyanensis substantiate the gaps in understanding of the molecular architecture and multivariate clinical pictures of Leishmaniasis, on an international scale.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Weidong Wang ◽  
Liyang Chen ◽  
Kevin Fengler ◽  
Joy Bolar ◽  
Victor Llaca ◽  
...  

AbstractPhytophthora root and stem rot caused by P. sojae is a destructive soybean soil-borne disease found worldwide. Discovery of genes conferring broad-spectrum resistance to the pathogen is a need to prevent the outbreak of the disease. Here, we show that soybean Rps11 is a 27.7-kb nucleotide-binding site-leucine-rich repeat (NBS-LRR or NLR) gene conferring broad-spectrum resistance to the pathogen. Rps11 is located in a genomic region harboring a cluster of large NLR genes of a single origin in soybean, and is derived from rounds of unequal recombination. Such events result in promoter fusion and LRR expansion that may contribute to the broad resistance spectrum. The NLR gene cluster exhibits drastic structural diversification among phylogenetically representative varieties, including gene copy number variation ranging from five to 23 copies, and absence of allelic copies of Rps11 in any of the non-Rps11-donor varieties examined, exemplifying innovative evolution of NLR genes and NLR gene clusters.


2021 ◽  
Author(s):  
Jianxin Ma ◽  
Weidong Wang ◽  
Liyang Chen ◽  
Kevin Fengler ◽  
Joy Bolar ◽  
...  

Abstract Phytophthora root and stem rot (PRSR) caused by Phytophthora sojae is the most destructive soybean soil-borne disease worldwide. Discovery of genes conferring broad-spectrum resistance to the pathogen is an urgent need to prevent the outbreak of the disease. Here we show that soybean Rps11 is a 27.7-kb nucleotide-binding site-leucine-rich repeat (NBS-LRR or NLR) gene conferring extreme broad-spectrum resistance to the pathogen. Rps11 is located in a genomic region harboring a cluster of unusually large NLR genes belonging to a single evolutionary lineage that is distinct from all other lineages in the soybean genome, and was derived from rounds of intergenic and intragenic unequal recombination. Such recombination events have resulted in promoter fusion and expansion of the LRR domain that presumably explains such broadness of the resistance spectrum. The NLR gene cluster exhibits drastic structural diversification among phylogenetically representative varieties, including gene copy number variation ranging from five to 23 copies, and absence of allelic copies of Rps11 (i.e., rps11) in any of the non-Rps11-donor varieties examined. Our study thus exemplifies innovative evolution of NLR genes and NLR gene clusters and will accelerate the deployment of Rps11 for soybean protection.


Author(s):  
Marcelo Santos da Silva

For nearly all eukaryotic cells, stochastic DNA double-strand breaks (DSBs) are one of the most deleterious types of DNA lesions. DSB processing and repair can cause sequence deletions, loss of heterozygosity, and chromosome rearrangements resulting in cell death or carcinogenesis. However, trypanosomatids (single-celled eukaryotes parasites) do not seem to follow this premise strictly. Several studies have shown that trypanosomatids depend on DSBs to perform several events of paramount importance during their life cycle. For Trypanosoma brucei, DSBs formation is associated with host immune evasion via antigenic variation. In Trypanosoma cruzi, DSBs play a crucial role in the genetic exchange, a mechanism that is still little explored but appear to be of fundamental importance for generating variability. In Leishmania spp., DSBs are necessary to generate genomic changes by gene copy number variation (CNVs), events that are essential for these organisms to overcome inhospitable conditions. As DSB repair in trypanosomatids is primarily conducted via homologous recombination (HR), most of the events associated with DSBs are HR-dependent. This review will discuss the latest findings on how trypanosomatids balance the benefits and inexorable challenges caused by DSBs.


2021 ◽  
Author(s):  
Sarah B Yakimowski ◽  
Zachary Teitel ◽  
Christina M. Caruso

Gene copy number variation (CNV) has been increasingly associated with organismal responses to environmental stress, but we know little about the quantitative relation between CNV and phenotypic variation. In this study we quantify variation in EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) copy number using digital drop PCR and variation in phenotypic glyphosate resistance in 22 populations of Amaranthus palmeri (Palmer Amaranth), a range-expanding agricultural weed. Overall, we detected a significant positive relation between population mean copy number and mean resistance. The majority of populations exhibited high glyphosate resistance, yet maintained low-resistance individuals resulting in bimodality in many populations. We investigated linear and threshold models for the relation between copy number and resistance, and found evidence for a threshold of ~15 EPSPS copies: there was a steep increase in resistance before the threshold, followed by a much shallower slope. Moreover, as copy number increases, the range of variation in resistance decreases. This suggests a working hypothesis that as EPSPS copies and dosage increases, negative epistatic interactions may be compensated. We detected a quadratic relation between mean resistance and variation (s.d.) in resistance, consistent with the prediction that as phenotypic resistance increases in populations, stabilizing selection decreases variation in the trait. Finally, patterns of variation across the landscape are consistent with less variation among populations in mean copy number / resistance in Georgia where glyphosate resistance was first detected, and wider variation among populations in resistance and copy number in a more northern state where resistance evolution may be at a younger evolutionary state.


2021 ◽  
Author(s):  
Thuraya M Mutawi ◽  
Mohamed M Zedan ◽  
Raida S Yahya ◽  
Mahmoud M Zakria ◽  
Mamdouh R El-Sawi ◽  
...  

Aim: This study investigated major allelic variants of CYP2D6, CYP3A4 and CYP3A5 in Egyptians, an Arabic population for which there is little information regarding these important pharmacogenes. Patients & methods: CYP2D6*2, *4, *5, *10, *41 and gene copy number variation, as well as CYP3A4*22 and CYP3A5*3 were determined with commercially available TaqMan assays in 145 healthy study participants. Results: The CYP2D6 alleles identified suggest that the prevalence of poor metabolizers is low as none were found among the 145 subjects investigated. The frequency for CYP3A5 nonexpressers was 74.5% and the CYP3A4*22 allele frequency was low at 2.0%. Conclusion: These preliminary findings indicate that pharmacogene variation in Egyptians is different from those of other Middle Eastern/Arabic populations and warrants further investigation.


2021 ◽  
Author(s):  
Rodrigo P. Baptista ◽  
Yiran Li ◽  
Adam Sateriale ◽  
Mandy J. Sanders ◽  
Karen L. Brooks ◽  
...  

ABSTRACTCryptosporidiosis is a leading cause of waterborne diarrheal disease globally and an important contributor to mortality in infants and the immunosuppressed. Despite its importance, the Cryptosporidium community still relies on a fragmented reference genome sequence from 2004. Incomplete reference sequences hamper experimental design and interpretation. We have generated a new C. parvum IOWA genome assembly supported by PacBio and Oxford Nanopore long-read technologies and a new comparative and consistent genome annotation for three closely related species C. parvum, C. hominis and C. tyzzeri. The new C. parvum IOWA reference genome assembly is larger, gap free and lacks ambiguous bases. This chromosomal assembly recovers 13 of 16 possible telomeres and raises a new hypothesis for the remaining telomeres and associated subtelomeric regions. Comparative annotation revealed that most “missing” orthologs are found suggesting that species differences result primarily from structural rearrangements, gene copy number variation and SNVs in C. parvum, C. hominis and C. tyzzeri. We made >1,500 C. parvum annotation updates based on experimental evidence. They included new transporters, ncRNAs, introns and altered gene structures. The new assembly and annotation revealed a complete DNA methylase Dnmt2 ortholog. 190 genes under positive selection including many new candidates were identified using the new assembly and annotation as reference. Finally, possible subtelomeric amplification and variation events in C. parvum are detected that reveal a new level of genome plasticity that will both inform and impact future research.


Sign in / Sign up

Export Citation Format

Share Document