IMPROVEMENT OF PHENOTYPING IN GENOME WIDE ASSOCIATION STUDIES ON SCHIZOPHRENIA: AN APPLICATION OF LATENT CLASS FACTOR ANALYSIS

2010 ◽  
Vol 117 (2-3) ◽  
pp. 184-185
Author(s):  
Eske M. Derks ◽  
Judith Allardyce ◽  
Marco P. Boks ◽  
Roel A. Ophoff
Author(s):  
Junji Morisawa ◽  
Takahiro Otani ◽  
Jo Nishino ◽  
Ryo Emoto ◽  
Kunihiko Takahashi ◽  
...  

AbstractBayes factor analysis has the attractive property of accommodating the risks of both false negatives and false positives when identifying susceptibility gene variants in genome-wide association studies (GWASs). For a particular SNP, the critical aspect of this analysis is that it incorporates the probability of obtaining the observed value of a statistic on disease association under the alternative hypotheses of non-null association. An approximate Bayes factor (ABF) was proposed by Wakefield (Genetic Epidemiology 2009;33:79–86) based on a normal prior for the underlying effect-size distribution. However, misspecification of the prior can lead to failure in incorporating the probability under the alternative hypothesis. In this paper, we propose a semi-parametric, empirical Bayes factor (SP-EBF) based on a nonparametric effect-size distribution estimated from the data. Analysis of several GWAS datasets revealed the presence of substantial numbers of SNPs with small effect sizes, and the SP-EBF attributed much greater significance to such SNPs than the ABF. Overall, the SP-EBF incorporates an effect-size distribution that is estimated from the data, and it has the potential to improve the accuracy of Bayes factor analysis in GWASs.


Sign in / Sign up

Export Citation Format

Share Document