The effect of chilling, defoliation and hydrogen cyanamide on dormancy release, bud break and fruiting of Anna apple cultivar

2008 ◽  
Vol 118 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Aiman K.A. Mohamed
2007 ◽  
Vol 47 (6) ◽  
pp. 738 ◽  
Author(s):  
R. V. Botelho ◽  
M. M. L. Müller

This study aimed to examine the effects of garlic extract (Bioalho) on bud break of ‘Royal Gala’ apple trees compared with the effects of the conventionally used hydrogen cyanamide (H2CN2). In the southern region of Brazil, immediately after winter pruning on 19 September 2005, the following treatments were sprayed at dormant bud stage using a hand sprayer: (1) control (untreated); (2) 1% garlic extract (GE); (3) 5% GE; (4) 10% GE; (5) 2% mineral oil (MO); (6) 1% GE + 2% MO; (7) 5% GE + 2% MO; (8) 10% GE + 2% MO; (9) 0.4% H2CN2 + 4% MO. GE at 1 or 5% + 2% MO showed similar effects compared with H2CN2 alone, achieving ~80% bud sprouting, whereas 2% MO and the untreated control attained 53 and 18% bud sprouting, respectively. The 10% GE + 2% MO treatment was superior to the others treatments, reaching 95% bud sprouting at 50 days after treatments. The application of 10% GE + 2% MO was also the most effective in advancing bloom. Unfortunately, in this experiment, this also contributed to reduced fruit yield, since the early anthesis coincided with an atypical rainfall in the beginning of spring.


Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 102
Author(s):  
Hao Wang ◽  
Xiuying Xia ◽  
Lijia An

Bud dormancy of deciduous fruit trees is a complex process that allows trees to survive long periods in adverse conditions during winter. Dormancy is a major obstacle for both fruit production in mild winter areas and off-season culture of fruit trees in protection facilities. It is very economically advantageous to be able to control the time point of bud break and consequently harvest in crops with high returns and short harvest seasons like blueberry (Vaccinium spp.). Hydrogen cyanamide (H2CN2 (HC)) treatment is an effective method to promote dormancy release and synchronize bud break in perennial deciduous fruit trees, including blueberry. However, there are few systematic studies of the metabolic changes that occur during HC-induced bud breaking. In this study, the metabolome of blueberry buds under forced conditions following HC and water treatment (control) was analyzed using gas chromatography paired with time-of-flight mass spectrometry (GC–TOFMS) technology. A total of 252 metabolites were identified and 16 differential metabolites (VIP > 1, p < 0.05) were detected. The levels of several soluble sugars (fructose, glucose, maltose), organic acids (citric acid, alpha-ketoglutaric, succinic acid), and amino acids (aspartic acid, glutamic acid, phenylalanine) were upregulated, while tyrosine, tryptophan, and asparagine were significantly downregulated in HC-treated buds when compared with control buds. The synthesis and accumulation of phenylpropanoids (salicin, 4-vinylphenol, neohesperidin) were also promoted by HC. These results suggest that alteration of carbohydrate and amino acid metabolism, tricarboxylic acid (TCA) cycle increase, and phenylpropanoid accumulation were crucial in HC-promoted bud breaking in blueberry. This research extends our understanding of the mechanisms involved in dormancy release induced by HC and provides a theoretical basis for applying HC to accelerate bud break.


2021 ◽  
pp. 313-316
Author(s):  
M.M. Fagherazzi ◽  
L. Rufato ◽  
A.A. Kretzschmar ◽  
A.F. Fagherazzi ◽  
B. Bem ◽  
...  

2018 ◽  
Vol 14 (2) ◽  
Author(s):  
Yuto Kitamura ◽  
Tsuyoshi Habu ◽  
Hisayo Yamane ◽  
Soichiro Nishiyama ◽  
Kei Kajita ◽  
...  

2013 ◽  
Vol 50 (3) ◽  
pp. 398-406 ◽  
Author(s):  
MOHAMED GHRAB ◽  
MEHDI BEN MIMOUN

SUMMARYClimate change characterized by global warming is expected to have an incidence on fruit trees’ development and production. The severity of these effects depends on lack of chilling. The current study focused on the research of an optimal dose of hydrogen cyanamide (Dormex®) treatment which can advance the bud break of female pistachio trees (Pistacia veraL.) to ensure better blooming synchronization with pollinators. A field experiment was conducted in northern Tunisia (36°49′N, 9°48′E) on mature pistachio trees. Two hydrogen cyanamide treatments at 2% and 4% Dormex® were applied with reference to the control untreated trees. The flowering time, vegetative growth, starch content, productivity and nut characters were followed. Results show that 4% Dormex® advanced the normal bud break by 15 days and flowering by 11 days and improved natural pollination by synchronization of male and female flowers. Consequently, fresh yield and nut quality as split and blank rates and nut weight were improved. However, shoot growth, leaf area and starch content in current shoot seemed unaffected by hydrogen cyanamide applications. In conclusion, hydrogen cyanamide could be used as 4% Dormex® and sprayed 45 days before bud break to improve pistachio productivity and prevent anomalies of lack of chilling due to global warming that could be more frequent in the Mediterranean areas.


2002 ◽  
Author(s):  
Etti Or ◽  
David Galbraith ◽  
Anne Fennell

 The timing of dormancy induction and release is very important to the economic production of table grape. Advances in manipulation of dormancy induction and dormancy release are dependent on the establishment of a comprehensive understanding of biological mechanisms involved in bud dormancy. To gain insight into these mechanisms we initiated the research that had two main objectives: A. Analyzing the expression profiles of large subsets of genes, following controlled dormancy induction and dormancy release, and assessing the role of known metabolic pathways, known regulatory genes and novel sequences involved in these processes B. Comparing expression profiles following the perception of various artificial as well as natural signals known to induce dormancy release, and searching for gene showing similar expression patterns, as candidates for further study of pathways having potential to play a central role in dormancy release. We first created targeted EST collections from V. vinifera and V. riparia mature buds. Clones were randomly selected from cDNA libraries prepared following controlled dormancy release and controlled dormancy induction and from respective controls. The entire collection (7920 vinifera and 1194 riparia clones) was sequenced and subjected to bioinformatics analysis, including clustering, annotations and GO classifications. PCR products from the entire collection were used for printing of cDNA microarrays. Bud tissue in general, and the dormant bud in particular, are under-represented within the grape EST database. Accordingly, 59% of the our vinifera EST collection, composed of 5516 unigenes, are not included within the current Vitis TIGR collection and about 22% of these transcripts bear no resemblance to any known plant transcript, corroborating the current need for our targeted EST collection and the bud specific cDNA array. Analysis of the V. riparia sequences yielded 814 unigenes, of which 140 are unique (keilin et al., manuscript, Appendix B). Results from computational expression profiling of the vinifera collection suggest that oxidative stress, calcium signaling, intracellular vesicle trafficking and anaerobic mode of carbohydrate metabolism play a role in the regulation and execution of grape-bud dormancy release. A comprehensive analysis confirmed the induction of transcription from several calcium–signaling related genes following HC treatment, and detected an inhibiting effect of calcium channel blocker and calcium chelator on HC-induced and chilling-induced bud break. It also detected the existence of HC-induced and calcium dependent protein phosphorylation activity. These data suggest, for the first time, that calcium signaling is involved in the mechanism of dormancy release (Pang et al., in preparation). We compared the effects of heat shock (HS) to those detected in buds following HC application and found that HS lead to earlier and higher bud break. We also demonstrated similar temporary reduction in catalase expression and temporary induction of ascorbate peroxidase, glutathione reductase, thioredoxin and glutathione S transferase expression following both treatments. These findings further support the assumption that temporary oxidative stress is part of the mechanism leading to bud break. The temporary induction of sucrose syntase, pyruvate decarboxylase and alcohol dehydrogenase indicate that temporary respiratory stress is developed and suggest that mitochondrial function may be of central importance for that mechanism. These finding, suggesting triggering of identical mechanisms by HS and HC, justified the comparison of expression profiles of HC and HS treated buds, as a tool for the identification of pathways with a central role in dormancy release (Halaly et al., in preparation). RNA samples from buds treated with HS, HC and water were hybridized with the cDNA arrays in an interconnected loop design. Differentially expressed genes from the were selected using R-language package from Bioconductor project called LIMMA and clones showing a significant change following both HS and HC treatments, compared to control, were selected for further analysis. A total of 1541 clones show significant induction, of which 37% have no hit or unknown function and the rest represent 661 genes with identified function. Similarly, out of 1452 clones showing significant reduction, only 53% of the clones have identified function and they represent 573 genes. The 661 induced genes are involved in 445 different molecular functions. About 90% of those functions were classified to 20 categories based on careful survey of the literature. Among other things, it appears that carbohydrate metabolism and mitochondrial function may be of central importance in the mechanism of dormancy release and studies in this direction are ongoing. Analysis of the reduced function is ongoing (Appendix A). A second set of hybridizations was carried out with RNA samples from buds exposed to short photoperiod, leading to induction of bud dormancy, and long photoperiod treatment, as control. Analysis indicated that 42 genes were significant difference between LD and SD and 11 of these were unique.


Sign in / Sign up

Export Citation Format

Share Document