Total body water and water compartments assessment in athletes: Validity of multi-frequency bioelectrical impedance

2019 ◽  
Vol 34 (6) ◽  
pp. e307-e313 ◽  
Author(s):  
C.N. Matias ◽  
F.A. Noujeimi ◽  
L.B. Sardinha ◽  
V.H. Teixeira ◽  
A.M. Silva
1999 ◽  
Vol 87 (3) ◽  
pp. 1087-1096 ◽  
Author(s):  
R. Gudivaka ◽  
D. A. Schoeller ◽  
R. F. Kushner ◽  
M. J. G. Bolt

The 1994 National Institutes of Health Technology Conference on bioelectrical impedance analysis (BIA) did not support the use of BIA under conditions that alter the normal relationship between the extracellular (ECW) and intracellular water (ICW) compartments. To extend applications of BIA to these populations, we investigated the accuracy and precision of seven previously published BIA models for the measurement of change in body water compartmentalization among individuals infused with lactated Ringer solution or administered a diuretic agent. Results were compared with dilution by using deuterium oxide and bromide combined with short-term changes of body weight. BIA, with use of proximal, tetrapolar electrodes, was measured from 5 to 500 kHz, including 50 kHz. Single-frequency, 50-kHz models did not accurately predict change in total body water, but the 50-kHz parallel model did accurately measure changes in ICW. The only model that accurately predicted change in ECW, ICW, and total body water was the 0/∞-kHz parallel (Cole-Cole) multifrequency model. Use of the Hanai correction for mixing was less accurate. We conclude that the multifrequency Cole-Cole model is superior under conditions in which body water compartmentalization is altered from the normal state.


PEDIATRICS ◽  
1962 ◽  
Vol 29 (6) ◽  
pp. 883-889
Author(s):  
Wesley M. Clapp ◽  
L. Joseph Butterfield ◽  
Donough O'Brien

Normal values for both total body water and extracellular water have been determined in 86 premature infants aged 1 to 90 days and weighing 940 to 2,435 gm, with use of the techniques of deuterium oxide and bromide dilution. Nine full-term infants aged 1 to 6 days and weighing 2,590 to 4,985 gm were similarly studied. Nine infants with the respiratory distress syndrome and eight infants of toxemic mothers studied in the first 24 hours of life showed no significant difference in their body water compartments in comparison to a control group of normal infants matched for age and weight. Seven infants of diabetic mothers studied in the first 24 hours of life showed a significant decrease in total body water, expressed as percentage of body weight, with a normal intracellular to extracellular water ratio. These data indirectly support other evidence that there is an increase in body fat in these infants at birth. See Table in the PDF file


PEDIATRICS ◽  
1961 ◽  
Vol 28 (2) ◽  
pp. 169-181
Author(s):  
B. Friis-Hansen

During growth of infants and children, certain characteristic changes are found. A rapid decrease of the relative volumes of total body water and of extracellular water occurs during the first year of life, followed by a smaller decrease of volume of extracellular water later in childhood. At the same time an increased heterogeneity of the extracellular water takes place. On the other hand, the volume of intracellular water increases a little during the first months of life and remains more or less constant from then on. Formulas and nomograms from which these body water compartments can be predicted are presented. Finally, data on the corresponding changes in the total body water and in body specific gravity are discussed.


1993 ◽  
Vol 8 (8) ◽  
pp. 716-719 ◽  
Author(s):  
C. H. Kong ◽  
C. M. Thompson ◽  
C. A. Lewis ◽  
P. D. Hill ◽  
F. D. Thompson

1989 ◽  
Vol 16 (2) ◽  
pp. 173-173
Author(s):  
Reynaldo Martorell ◽  
Jean-Pierre Habicht ◽  
Jere Haas

2003 ◽  
Vol 40 (0) ◽  
pp. s203-s206 ◽  
Author(s):  
R. Martinoli ◽  
E. I. Mohamed ◽  
C. Maiolo ◽  
R. Cianci ◽  
F. Denoth ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document