BODY WATER COMPARTMENTS IN CHILDREN: CHANGES DURING GROWTH AND RELATED CHANGES IN BODY COMPOSITION

PEDIATRICS ◽  
1961 ◽  
Vol 28 (2) ◽  
pp. 169-181
Author(s):  
B. Friis-Hansen

During growth of infants and children, certain characteristic changes are found. A rapid decrease of the relative volumes of total body water and of extracellular water occurs during the first year of life, followed by a smaller decrease of volume of extracellular water later in childhood. At the same time an increased heterogeneity of the extracellular water takes place. On the other hand, the volume of intracellular water increases a little during the first months of life and remains more or less constant from then on. Formulas and nomograms from which these body water compartments can be predicted are presented. Finally, data on the corresponding changes in the total body water and in body specific gravity are discussed.

PEDIATRICS ◽  
1962 ◽  
Vol 29 (6) ◽  
pp. 883-889
Author(s):  
Wesley M. Clapp ◽  
L. Joseph Butterfield ◽  
Donough O'Brien

Normal values for both total body water and extracellular water have been determined in 86 premature infants aged 1 to 90 days and weighing 940 to 2,435 gm, with use of the techniques of deuterium oxide and bromide dilution. Nine full-term infants aged 1 to 6 days and weighing 2,590 to 4,985 gm were similarly studied. Nine infants with the respiratory distress syndrome and eight infants of toxemic mothers studied in the first 24 hours of life showed no significant difference in their body water compartments in comparison to a control group of normal infants matched for age and weight. Seven infants of diabetic mothers studied in the first 24 hours of life showed a significant decrease in total body water, expressed as percentage of body weight, with a normal intracellular to extracellular water ratio. These data indirectly support other evidence that there is an increase in body fat in these infants at birth. See Table in the PDF file


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Anna Matyjek ◽  
Aleksandra Rymarz ◽  
Stanisław Niemczyk

Abstract Background and Aims One of the major symptoms of severe nephrotic syndrome is fluid retention. Fluid overload can induce cardiovascular damage. NT-proBNP (N-terminal pro-brain natriuretic peptide) and hsTnT (high sensitivity troponin T) are well known markers of this disorder. The aim of the study was to evaluate the association between volumes of body water compartments and markers of cardiovascular damage in patients with severe nephrotic syndrome (SNS) defined as nephrotic range proteinuria and hypalbuminaemia ≤ 2.5 g/dl. Method 40 patients with SNS and eGFR >30 ml/min/1.73m2 formed the study group (SNSG) and 40 healthy volunteers without SNS matched according to age, sex, height, body mass and kidney function formed the control group (CG). In all participants serum creatinine, serum albumin concentration, daily proteinuria, hsTnT and NT-proBNP were measured. Body water compartments such as extracellular water (ECW), intracellular water (ICW), total body water (TBW), overhydration (OH) were assessed using Body Composition Monitor, Fresenius Medical Care. For statistical analysis Spearman’s correlation coefficients, chi2 or Mann-Whitney U tests were used (Statistica v 13.1). Results SNSG included 28 males (70%) and 12 females. Median age was 55 years (IQR 30-65), the mean daily proteinuria was 10.5 ±5.0 g. The characteristics of the study parameters in two groups are described in the table. Significantly higher hsTnT (18 vs 6 ng/l, p=0.0001) and NT-proBNP (294.8 vs 47.1 pg/ml, p=0.0003) levels were observed in the severe nephrotic syndrome group in comparison (SNSG) to CG. In SNSG extracellular water was significantly higher (20.9 ±5,2 vs 17.4 ±3.3 L, p=0.001) and intracellular water (ICW) was significantly lower (18.9 ±5.2 vs 21.4 ±4.8 L, p=0.034) in comparison to CG. Interestingly total body water (TBW) did not differ between the groups (39.8 ±8.6 vs 38.8 ±7.7 L, p=0.603). Also overhydration which is a derivative of ECW, was higher in SNSG (OH: 4.2 vs 0.3 L, p<0.0001) than in CG. Significant, positive correlation was observed between OH and NT-proBNP (R=0.56, p<0.0001) as well as hsTnT (R=0.60, p<0.0001). We did not observed significant correlation between ECW and NT-proBNP or hsTnT. Conclusion In the severe nephrotic syndrome group fluid retention was associated with the increase in ECW and the decrease in ICW whereas TBW was the same in both groups. Such constellation can indicate for intracellular underhydration which was not describe so far. Overhydration, which is a derivative of ECW, positively correlated with markers of cardiovascular damage and can be important for patients with resistant SNS and can influence their prognosis.


1997 ◽  
Vol 82 (3) ◽  
pp. 907-911 ◽  
Author(s):  
Wouter D. van Marken Lichtenbelt ◽  
Yvonne E. M. Snel ◽  
Robert-Jan M. Brummer ◽  
Hans P. F. Koppeschaar

Abstract GH has a strong influence on body composition. However, the effects of GH deficiency in adults on water compartments are not well understood. Therefore, extracellular water (ECW) and total body water were independently determined by deuterium and bromide dilution and by bioimpedance spectrometry in GH-deficient (GHD) adults and compared to those in controls, matched for age, sex, body weight, and height. The results show that the percent body fat was significantly (P < 0.05) higher, and total body water and intracellular water (ICW) were significantly lower in GHD adults for males, females, and both sexes combined. ECW was not significantly different between the two groups. ECW/ICW in GHD adults (0.42 ± 0.03) was significantly (P < 0.01) higher than that in controls (0.39 ± 0.02). There was a significant positive relation between the ECW/ICW ratio and the percent body fat. These results were confirmed by the bioimpedance spectrometry measurements.


1995 ◽  
Vol 73 (3) ◽  
pp. 349-358 ◽  
Author(s):  
Paul Deurenberg ◽  
Anna Tagliabue ◽  
Frans J. M. Schouten

The relationship between total body water (TBW) and extracellular water (ECW), measured by deuterium oxide dilution and bromide dilution respectively, and impedance and impedance index (height2/impedance) at 1, 5, 50 and 100 kHz was studied. After correction for TBW, ECW was correlated only with the impedance index at 1 and 5 kHz. After correction for ECW, TBW was best correlated with the impedance index at 100 kHz. The correlation of body-water compartments with impedance values obtained with modelling programs was lower than with measured impedance values. Prediction formulas for ECW (at 1 and 5 kHz) and TBW (at 50 and 100 kHz) were developed. The prediction errors for ECW and TBW were 1·0 and 1·7 kg respectively (coefficient of variation 5%). The residuals of both ECW and TBW were related to the ECW/TBW value. Application of the prediction formulas in a population, independently measured, revealed a slight overestimation of TBW and ECW, which could be largely explained by differences in the validation group in body-water distribution and in body builds. The ratio of impedance at 1 kHz to impedance at 100 kHz was correlated with body-water distribution (ECW/TBW). The relation is however not strong enough to be useful as a predictor. It is concluded that an independent prediction of ECW and TBW, using impedance at low and high frequency respectively, is possible, but that the bias depends on the body-water distribution and body build of the measured subject.


2021 ◽  
Vol 10 (13) ◽  
pp. 2917
Author(s):  
Bora Chae ◽  
Yo Sep Shin ◽  
Seok-In Hong ◽  
Sang Min Kim ◽  
Youn-Jung Kim ◽  
...  

(1) Bio-electrical impedance analysis (BIA) is a rapid, simple, and noninvasive tool for evaluating the metabolic status and for assessing volume status in critically ill patients. Little is known, however, the prognostic value of body composition analysis in septic shock patients. This study assessed the association between parameters by body composition analysis and mortality in patients with septic shock in the emergency department (ED). (2) Data were prospectively collected on adult patients with septic shock who underwent protocol-driven resuscitation bundle therapy between December 2019 and January 2021. The primary outcome was 30-day mortality. (3) The study included 261 patients, the average ratio of extracellular water (ECW) to total body water (TBW) was significantly higher in non-survivors than in survivors (0.414 vs. 0.401, p < 0.001). Multivariate analysis showed that ECW/TBW ≥ 0.41 (odds ratio (OR), 4.62; 95% confidence interval (CI), 2.31–9.26, p < 0.001), altered mental status (OR, 2.88; 95% CI, 1.28–6.46, p = 0.010), and lactate level (OR, 1.24; 95% CI, 1.12–1.37, p < 0.001) were significantly associated with 30-day mortality in patients with septic shock. (4) ECW/TBW ≥ 0.41 may be associated with 30-day mortality in patients with septic shock receiving protocol-driven resuscitation bundle therapy in the ED.


1998 ◽  
Vol 84 (5) ◽  
pp. 1801-1816 ◽  
Author(s):  
J. Matthie ◽  
B. Zarowitz ◽  
A. De Lorenzo ◽  
A. Andreoli ◽  
K. Katzarski ◽  
...  

Knowledge of patient fluid distribution would be useful clinically. Both single-frequency (SF) and impedance modeling approaches are proposed. The high intercorrelation between body water compartments makes determining the best approach difficult. This study was conducted to evaluate the merits of an SF approach. Mathematical simulation was performed to determine the effect of tissue change on resistance and reactance. Dilution results were reanalyzed, and resistance and parallel reactance were used to predict the intracellular water for two groups. Results indicated that the amount of intracellular and extracellular water conduction at any SF can vary with tissue change, and reactance at any SF is affected by all tissue parameters. Modeling provided a good prediction of dilution intracellular and extracellular water, but an SF method did not. Intracellular, extracellular, and total body water were equally predicted at all frequencies by SF resistance and parallel reactance. Extracellular and intracellular water are best measured through modeling, because only at the zero and infinite frequencies are the results sensitive only to extracellular and intracellular water. At all other frequencies there are other effects.


2013 ◽  
Vol 48 (1) ◽  
pp. 109-117 ◽  
Author(s):  
Dejan Reljic ◽  
Eike Hässler ◽  
Joachim Jost ◽  
Birgit Friedmann-Bette

Context Dehydration is assumed to be a major adverse effect associated with rapid loss of body mass for competing in a lower weight class in combat sports. However, the effects of such weight cutting on body fluid balance in a real-life setting are unknown. Objective To examine the effects of 5% or greater loss of body mass within a few days before competition on body water, blood volume, and plasma volume in elite amateur boxers. Design Case-control study. Setting Sports medicine laboratory. Patients or Other Participants Seventeen male boxers (age = 19.2 ± 2.9 years, height = 175.1 ± 7.0 cm, mass = 65.6 ± 9.2 kg) were assigned to the weight-loss group (WLG; n = 10) or the control group (CON; n = 7). Intervention(s) The WLG reduced body mass by restricting fluid and food and inducing excessive sweat loss by adhering to individual methods. The CON participated in their usual precompetition training. Main Outcome Measure(s) During an ordinary training period (t-1), 2 days before competition (t-2), and 1 week after competition (t-3), we performed bioelectrical impedance measurements; calculated total body water, intracellular water, and extracellular water; and estimated total hemoglobin mass (tHbmass), blood volume, and plasma volume by the CO-rebreathing method. Results In the WLG, the loss of body mass (5.6% ± 1.7%) led to decreases in total body water (6.0% ± 0.9%), extracellular water (12.4% ± 7.6%), tHbmass (5.3% ± 3.8%), blood volume (7.6% ± 2.1%; P &lt; .001), and plasma volume (8.6% ± 3.9%). The intracellular water did not change (P &gt; .05). At t-3, total body water, extracellular water, and plasma volume had returned to near baseline values, but tHbmass and blood volume still were less than baseline values (P &lt; .05). In CON, we found no changes (P &gt; .05). Conclusions In a real-life setting, the loss of approximately 6% body mass within 5 days induced hypohydration, which became evident by the decreases in body water and plasma volume. The reduction in tHbmass was a surprising observation that needs further investigation.


1968 ◽  
Vol 53 (6) ◽  
pp. 579-587 ◽  
Author(s):  
Charlotte M. Young ◽  
Alison D. Bogan ◽  
Daphne A. Roe ◽  
Leo Lutwak

Sign in / Sign up

Export Citation Format

Share Document