scholarly journals Impact of land use on urban mobility patterns, emissions and air quality in a Portuguese medium-sized city

2011 ◽  
Vol 409 (6) ◽  
pp. 1154-1163 ◽  
Author(s):  
Jorge M. Bandeira ◽  
Margarida C. Coelho ◽  
Maria Elisa Sá ◽  
Richard Tavares ◽  
Carlos Borrego
2016 ◽  
Vol 5 (2) ◽  
pp. 121-129 ◽  
Author(s):  
Angel J. Lopez ◽  
Ivana Semanjski ◽  
Dominique Gillis ◽  
Daniel Ochoa ◽  
Sidharta Gautama

Traditional travel survey methods have been widely used for collecting information about urban mobility although Global Position System (GPS) has become an automatic option for collecting more precise data of the households since mid-1990s. Many studies on mobility patterns have focused on the GPS advantages leaving aside its issues such as the quality of the data collected. However, when it comes to extract the frequency of the trips and travelled distance, this technology faces some gaps due to the related issues such as signal reception and time-to-first-fix location that turns out in missing observations and respectively unrecognised or over-segmented trips. In this study, we focus on two aspects of GPS data for a car-mode, (i) measurement of the gaps in the travelled distance and (ii) estimation of the travelled distance and the factors that influence the GPS gaps. To asses that, GPS tracks are compared to a ground truth source. Additionally, the trips are analysed based on the land use (e.g. urban and rural areas) and length (e.g. short, medium and long trips). Results from 170 participants and more than a year of GPStracking show that around 9 % of the travelled distance is not captured by GPS and it affects more short trips than long ones. Moreover, we validate the importance of the time spent on the user activity and the land use as factors that influence the gaps in GPS.


2021 ◽  
Vol 10 (10) ◽  
pp. 659
Author(s):  
Xingdong Deng ◽  
Yang Liu ◽  
Feng Gao ◽  
Shunyi Liao ◽  
Fan Zhou ◽  
...  

Numerous studies have been devoted to uncovering the characteristics of resident density and urban mobility with multisource geospatial big data. However, little attention has been paid to the internal diversity of residents such as their occupations, which is a crucial aspect of urban vibrancy. This study aims to investigate the variation between individual and interactive influences of built environment factors on occupation mixture index (OMI) with a novel GeoDetector-based indicator. This study first integrated application (App) use and mobility patterns from cellphone data to portray residents’ occupations and evaluate the OMI in Guangzhou. Then, the mechanism of OMI distribution was analyzed with the GeoDetector model. Next, an optimized GeoDetector-based index, interactive effect variation ratio (IEVR) was proposed to quantify the variation between individual and interactive effects of factors. The results showed that land use mixture was the dominating factor, and that land use mixture, building density, floor area ratio, road density affected the OMI distribution directly. Some interesting findings were uncovered by IEVR. The influences of cultural inclusiveness and metro accessibility were less important in factor detector result, while they were found to be the most influential in an indirect way interacting with other built environment factors. The results suggested that both “hardware facilities” (land use mixture, accessibility) and “soft facilities” (cultural inclusiveness) should be considered in planning a harmonious urban employment space and sustainable city.


Author(s):  
Elena C. McDonald-Buller ◽  
Alba Webb ◽  
Kara M. Kockelman ◽  
Bin (Brenda) Zhou

Author(s):  
Qijiao Xie ◽  
Qi Sun

Aerosols significantly affect environmental conditions, air quality, and public health locally, regionally, and globally. Examining the impact of land use/land cover (LULC) on aerosol optical depth (AOD) helps to understand how human activities influence air quality and develop suitable solutions. The Landsat 8 image and Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol products in summer in 2018 were used in LULC classification and AOD retrieval in this study. Spatial statistics and correlation analysis about the relationship between LULC and AOD were performed to examine the impact of LULC on AOD in summer in Wuhan, China. Results indicate that the AOD distribution expressed an obvious “basin effect” in urban development areas: higher AOD values concentrated in water bodies with lower terrain, which were surrounded by the high buildings or mountains with lower AOD values. The AOD values were negatively correlated with the vegetated areas while positively correlated to water bodies and construction lands. The impact of LULC on AOD varied with different contexts in all cases, showing a “context effect”. The regression correlations among the normalized difference vegetation index (NDVI), normalized difference built-up index (NDBI), normalized difference water index (NDWI), and AOD in given landscape contexts were much stronger than those throughout the whole study area. These findings provide sound evidence for urban planning, land use management and air quality improvement.


2012 ◽  
Vol 46 (19) ◽  
pp. 10835-10841 ◽  
Author(s):  
C.-C. Tsao ◽  
J. E. Campbell ◽  
M. Mena-Carrasco ◽  
S. N. Spak ◽  
G. R. Carmichael ◽  
...  

2014 ◽  
Vol 7 (3) ◽  
pp. 1001-1024 ◽  
Author(s):  
P. A. Makar ◽  
R. Nissen ◽  
A. Teakles ◽  
J. Zhang ◽  
Q. Zheng ◽  
...  

Abstract. The balance between turbulent transport and emissions is a key issue in understanding the formation of O3 and particulate matter with diameters less than 2.5 μm (PM2.5). Discrepancies between observed and simulated concentrations for these species have, in the past, been ascribed to insufficient turbulent mixing, particularly for atmospherically stable environments. This assumption may be simplistic – turbulent mixing deficiencies may explain only part of these discrepancies, and as turbulence parameterizations are improved, the timing of primary PM2.5 emissions may play a much more significant role in the further reduction of model error. In a study of these issues, two regional air-quality models, the Community Multi-scale Air Quality model (CMAQ, version 4.6) and A Unified Regional Air-quality Modelling System (AURAMS, version 1.4.2), were compared to observations for a domain in north-western North America. The air-quality models made use of the same emissions inventory, emissions processing system, meteorological driving model, and model domain, map projection and horizontal grid, eliminating these factors as potential sources of discrepancies between model predictions. The initial statistical comparison between the models and monitoring network data showed that AURAMS' O3 simulations outperformed those of this version of CMAQ4.6, while CMAQ4.6 outperformed AURAMS for most PM2.5 statistical measures. A process analysis of the models revealed that many of the differences between the models' results could be attributed to the strength of turbulent diffusion, via the choice of an a priori lower limit in the magnitude of vertical diffusion coefficients, with AURAMS using 0.1 m2 s−1 and CMAQ4.6 using 1.0 m2 s−1. The use of the larger CMAQ4.6 value for the lower limit of vertical diffusivity within AURAMS resulted in a similar performance for the two models (with AURAMS also showing improved PM2.5, yet degraded O3, and a similar time series as CMAQ4.6). The differences between model results were most noticeable at night, when the higher minimum turbulent diffusivity resulted in an erroneous secondary peak in predicted night-time O3. A spatially invariant and relatively high lower limit in diffusivity could not reduce errors in both O3 and PM2.5 fields, implying that other factors aside from the strength of turbulence might be responsible for the PM2.5 over-predictions. Further investigation showed that the magnitude, timing and spatial allocation of area source emissions could result in improvements to PM2.5 performance with minimal O3 performance degradation. AURAMS was then used to investigate a land-use-dependant lower limit in diffusivity of 1.0 m2 s−1 in urban regions, linearly scaling to 0.01 m2s−1 in rural areas, as employed in CMAQ5.0.1. This strategy was found to significantly improve mean statistics for PM2.5 throughout the day and mean O3 statistics at night, while significantly degrading (halving) midday PM2.5 correlation coefficients and slope of observed to model simulations. Time series of domain-wide model error statistics aggregated by local hour were shown to be a useful tool for performance analysis, with significant variations in performance occurring at different hours of the day. The use of the land-use-dependant lower limit in diffusivity was also shown to reduce the model's sensitivity to the temporal allocation of its emissions inputs. The modelling scenarios suggest that while turbulence plays a key role in O3 and PM2.5 formation in urban regions, and in their downwind transport, the spatial and temporal allocation of primary PM2.5 emissions also has a potentially significant impact on PM2.5 concentration levels. The results show the complex nature of the interactions between turbulence and emissions, and the potential of the strength of the former to mask the impact of changes in the latter.


2019 ◽  
Vol 12 (1) ◽  
pp. 525-539 ◽  
Author(s):  
Roger Cremades ◽  
Philipp S. Sommer

Abstract. Cities are fundamental to climate change mitigation, and although there is increasing understanding about the relationship between emissions and urban form, this relationship has not been used to provide planning advice for urban land use so far. Here we present the Integrated Urban Complexity model (IUCm 1.0) that computes “climate-smart urban forms”, which are able to cut emissions related to energy consumption from urban mobility in half. Furthermore, we show the complex features that go beyond the normal debates about urban sprawl vs. compactness. Our results show how to reinforce fractal hierarchies and population density clusters within climate risk constraints to significantly decrease the energy consumption of urban mobility. The new model that we present aims to produce new advice about how cities can combat climate change.


2019 ◽  
Author(s):  
Lang Wang ◽  
Amos P. K. Tai ◽  
Chi-Yung Tam ◽  
Mehliyar Sadiq ◽  
Peng Wang ◽  
...  

Abstract. Surface ozone (O3) is an important air pollutant and greenhouse gas. Land use and land cover (LULC) is one of the critical factors influencing ozone, in addition to anthropogenic emissions and climate. LULC change can on the one hand affect ozone biogeochemically, i.e., via dry deposition and biogenic emissions of volatile organic compounds (VOCs). LULC change can on the other hand alter regional- to large-scale climate through modifying albedo and evapotranspiration, which can lead to changes in surface temperature, hydrometeorology and atmospheric circulation that can ultimately impact ozone biogeophysically over local and remote areas. Such biogeophysical effects of LULC on ozone are largely understudied. This study investigates the individual and combined biogeophysical and biogeochemical effects of LULC on ozone, and explicitly examines the critical pathway for how LULC change impacts ozone pollution. A global coupled atmosphere–chemistry–land model is driven by projected LULC changes from the present day (2000) to future (2050) under RCP4.5 and RCP8.5 scenarios, focusing on the boreal summer. Results reveal that when considering biogeochemical effects only, surface ozone is predicted to have slight changes by up to 2 ppbv maximum in some areas due to LULC changes. It is primarily driven by changes in isoprene emission and dry deposition counteracting each other in shaping ozone. In contrast, when considering the integrated effect of LULC, ozone is more substantially altered by up to 6 ppbv over several regions, reflecting the importance of biogeophysical effects on ozone changes. Furthermore, large areas of these ozone changes are found over the regions without LULC changes where the biogeophysical effect is the only pathway for such changes. The mechanism is likely that LULC change induces a regional circulation response, in particular the formation of anomalous stationary high-pressure systems, shifting of moisture transport, and near-surface warming over the middle-to-high northern latitudes in boreal summer, owing to associated changes in albedo and surface energy budget. Such temperature changes then alter ozone substantially. We conclude that the biogeophysical effect of LULC is an important pathway for the influence of LULC change on ozone air quality over both local and remote regions, even in locations without significant LULC changes. Overlooking the impact of biogeophysical effect may cause evident underestimation of the impacts of LULC change on ozone pollution.


Sign in / Sign up

Export Citation Format

Share Document