Impact of Urban Land Use and Anthropogenic Heat on Air Quality in Urban Environments

Author(s):  
Shuzhan Ren ◽  
Craig Stroud ◽  
Stephane Belair ◽  
Sylvie Leroyer ◽  
Michael Moran ◽  
...  
2020 ◽  
Vol 12 (7) ◽  
pp. 2964 ◽  
Author(s):  
Chia-An Ku

The deterioration of air quality in urban areas is often closely related to urbanization, as this has led to a significant increase in energy consumption and the massive emission of air pollutants, thereby exacerbating the current state of air pollution. However, the relationship between urban development and air quality is complex, thus making it difficult to be analyzed using traditional methods. In this paper, a framework integrating spatial analysis and statistical methods (based on 170 regression models) is developed to explore the spatial and temporal relationship between urban land use patterns and air quality, aiming to provide solid information for mitigation planning. The thresholds for the influence of urban patterns are examined using different buffer zones. In addition, the differences in the effects of various types of land use pattern on air quality were also explored. The results show that there were significant differences between 1999 and 2013 with regards to the correlations between land use patterns and air pollutant concentrations. Among all land uses, forest, water and built-up areas were proved to influence concentrations the most. It is suggested that the developed framework should be applied further in the real-world mitigation planning decision-making process


2019 ◽  
Author(s):  
Wenhui Kuang ◽  
Shu Zhang ◽  
Xiaoyong Li ◽  
Dengsheng Lu

Abstract. Accurate urban land-cover datasets are essential for mapping urban environments. However, a series of national urban land-cover data covering more than 15 years that characterizes urban environments is relatively rare. Here we propose a hierarchical principle on remotely sensed urban land-use/cover classification for mapping intra-urban structure/component dynamics. China's Land Use/cover Dataset (CLUD) is updated, delineating the imperviousness, green surface, waterbody and bare land conditions in cities. A new data subset called CLUD-Urban is created from 2000 to 2015 at five-year intervals with a medium spatial resolution (30 m). The first step is a prerequisite to extract the vector boundaries covered with urban areas from CLUD. A new method is then proposed using logistic regression between urban impervious surface area (ISA) and the annual maximum Normalized Difference Vegetation Index (NDVI) value retrieved from Landsat images based on a big-data platform with Google Earth Engine. National ISA and urban green space (UGS) fraction datasets for China are generated at 30-meter resolution with five-year intervals from 2000 to 2015. The overall classification accuracy of national urban areas is 92 %. The root mean square error values of ISA and UGS fractions are 0.10 and 0.14, respectively. The datasets indicate that the total urban area of China was 6.28 × 104 km2 in 2015, with average fractions of 70.70 % and 26.54 % for ISA and UGS, respectively. The ISA and UGS increased between 2000 and 2015 with unprecedented annual rates of 1,311.13 km2/yr and 405.30 km2/yr, respectively. CLUD-Urban can be used to enhance our understanding of urbanization impacts on ecological and regional climatic conditions and urban dwellers' environments. CLUD-Urban can be applied in future researches on urban environmental research and practices in the future. The datasets can be downloaded from https://doi.org/10.5281/zenodo.2644932.


2021 ◽  
Vol 13 (14) ◽  
pp. 7724
Author(s):  
Cuixia Yan ◽  
Lucang Wang ◽  
Qing Zhang

The intensification of global urbanization has exacerbated the negative impact of atmospheric environmental factors in urban areas, thus threatening the sustainability of future urban development. In order to ensure the sustainability of urban atmospheric environments, exploring the changing laws of urban air quality, identifying highly polluted areas in cities, and studying the relationship between air quality and land use have become issues of great concern. Based on AQI data from 340 air quality monitoring stations and urban land use data, this paper uses inverse distance weight (IDW), Getis-Ord Gi*, and a negative binomial regression model to discuss the spatiotemporal variation of air quality in the main urban area of Lanzhou and its relationship with urban land use. The results show that urban air quality has characteristics of temporal and spatial differentiation and spatially has characteristics of agglomeration of cold and hot spots. There is a close relationship between urban land use and air quality. Industrial activities, traffic pollution, and urban construction activities are the most important factors affecting urban air quality. Green spaces can reduce urban pollution. The impact of land use on air quality has a seasonal effect.


ZooKeys ◽  
2018 ◽  
Vol 801 ◽  
pp. 97-126 ◽  
Author(s):  
Katalin Szlavecz ◽  
Ferenc Vilisics ◽  
Zsolt Tóth ◽  
Elisabeth Hornung

In an increasingly urbanized world scientific research has shifted towards the understanding of cities as unique ecosystems. Urban land use change results in rapid and drastic changes in physical and biological properties, including that of biodiversity and community composition. Soil biodiversity research often lags behind the more charismatic groups such as vertebrates and plants. This paper attempts to fill this gap and provides an overview on urban isopod research. First, a brief overview on urban land use change is given, specifically on the major alterations on surface soils. Historical studies on urban isopods is summarized, followed by the status of current knowledge on diversity, distribution, and function of urban isopod species and communities. A review of more than 100 publications revealed that worldwide 50 cities and towns have some record of terrestrial isopod species, but only a few of those are city-scale explorations of urban fauna. A total of 110 isopod species has been recorded although the majority of them only once. The ten most frequently occurring isopods are widely distributed synanthropic species. Knowledge gaps and future research needs call for a better global dataset, long term monitoring of urban populations, multi-scale analyses of landscape properties as potential drivers of isopod diversity, and molecular studies to detect evolutionary changes.


2001 ◽  
Author(s):  
Debbie L. Adolphson ◽  
Terri L. Arnold ◽  
Faith A. Fitzpatrick ◽  
Mitchell A. Harris ◽  
Kevin D. Richards ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document