Prologue paper: Soil carbon losses from land-use change and the global agricultural greenhouse gas budget

2013 ◽  
Vol 465 ◽  
pp. 3-6 ◽  
Author(s):  
Jens Leifeld
2021 ◽  
Author(s):  
David Bysouth ◽  
Merritt Turetsky ◽  
Andrew Spring

<p>Climate change is causing rapid warming at northern high latitudes and disproportionately affecting ecosystem services that northern communities rely upon. In Canada’s Northwest Territories (NWT), climate change is impacting the access and availability of traditional foods that are critical for community health and well-being. With climate change potentially expanding the envelope of suitable agricultural land northward, many communities in the NWT are evaluating including agriculture in their food systems. However, the conversion of boreal forest to agriculture may degrade the carbon rich soils that characterize the region, resulting in large carbon losses to the atmosphere and the depletion of existing ecosystem services associated with the accumulation of soil organic matter. Here, we first summarize the results of 35 publications that address land use change from boreal forest to agriculture, with the goal of understanding the magnitude and drivers of carbon stock changes with time-since-land use change. Results from the literature synthesis show that conversion of boreal forest to agriculture can result in up to ~57% of existing soil carbon stocks being lost 30 years after land use change occurs. In addition, a three-way interaction with soil carbon, pH and time-since-land use change is observed where soils become more basic with increasing time-since-land use change, coinciding with declines in soil carbon stocks. This relationship is important when looking at the types of crops communities are interested in growing and the type of agriculture associated with cultivating these crops. Partnered communities have identified crops such as berry bushes, root vegetables, potatoes and corn as crops they are interested in growing. As berry bushes grow in acidic conditions and the other mentioned crops grow in more neutral conditions, site selection and management practices associated with growing these crops in appropriate pH environments will be important for managing soil carbon in new agricultural systems in the NWT. Secondly, we also present community scale soil data assessing variation in soil carbon stocks in relation to potential soil fertility metrics targeted to community identified crops of interest for two communities in the NWT.  We collected 192 soil cores from two communities to determine carbon stocks along gradients of potential agriculture suitability. Our field soil carbon measurements in collaboration with the partnered NWT communities show that land use conversions associated with agricultural development could translate to carbon losses ranging from 2.7-11.4 kg C/m<sup>2</sup> depending on the type of soil, agricultural suitability class, and type of land use change associated with cultivation. These results highlight the importance of managing soil carbon in northern agricultural systems and can be used to emphasize the need for new community scale data relating to agricultural land use change in boreal soils. Through the collection of this data, we hope to provide northern communities with a more robust, community scale product that will allow them to make informed land use decisions relating to the cultivation of crops and the minimization of soil carbon losses while maintaining the culturally important traditional food system.</p>


2020 ◽  
Vol 287 ◽  
pp. 106690 ◽  
Author(s):  
Aldair de Souza Medeiros ◽  
Stoécio Malta Ferreira Maia ◽  
Thiago Cândido dos Santos ◽  
Tâmara Cláudia de Araújo Gomes

GCB Bioenergy ◽  
2011 ◽  
Vol 4 (4) ◽  
pp. 372-391 ◽  
Author(s):  
Axel Don ◽  
Bruce Osborne ◽  
Astley Hastings ◽  
Ute Skiba ◽  
Mette S. Carter ◽  
...  

2018 ◽  
Vol 243 ◽  
pp. 940-952 ◽  
Author(s):  
Daniel Ruiz Potma Gonçalves ◽  
João Carlos de Moraes Sá ◽  
Umakant Mishra ◽  
Flávia Juliana Ferreira Furlan ◽  
Lucimara Aparecida Ferreira ◽  
...  

2022 ◽  
Vol 170 (1-2) ◽  
Author(s):  
Emily McGlynn ◽  
Serena Li ◽  
Michael F. Berger ◽  
Meredith Amend ◽  
Kandice L. Harper

AbstractNational greenhouse gas inventories (NGHGIs) will play an increasingly important role in tracking country progress against United Nations (UN) Paris Agreement commitments. Yet uncertainty in land use, land use change, and forestry (LULUCF) NGHGHI estimates may undermine international confidence in emission reduction claims, particularly for countries that expect forests and agriculture to contribute large near-term GHG reductions. In this paper, we propose an analytical framework for implementing the uncertainty provisions of the UN Paris Agreement Enhanced Transparency Framework, with a view to identifying the largest sources of LULUCF NGHGI uncertainty and prioritizing methodological improvements. Using the USA as a case study, we identify and attribute uncertainty across all US NGHGI LULUCF “uncertainty elements” (inputs, parameters, models, and instances of plot-based sampling) and provide GHG flux estimates for omitted inventory categories. The largest sources of uncertainty are distributed across LULUCF inventory categories, underlining the importance of sector-wide analysis: forestry (tree biomass sampling error; tree volume and specific gravity allometric parameters; soil carbon model), cropland and grassland (DayCent model structure and inputs), and settlement (urban tree gross to net carbon sequestration ratio) elements contribute over 90% of uncertainty. Net emissions of 123 MMT CO2e could be omitted from the US NGHGI, including Alaskan grassland and wetland soil carbon stock change (90.4 MMT CO2), urban mineral soil carbon stock change (34.7 MMT CO2), and federal cropland and grassland N2O (21.8 MMT CO2e). We explain how these findings and other ongoing research can support improved LULUCF monitoring and transparency.


2011 ◽  
pp. 224-228
Author(s):  
Uwe Lahl

The study proposes a regional approach to calculating indirect land use change (iLUC). The goal is to determine the greenhouse gas emissions (GHG) of biofuels brought about by iLUC in a specific region. A regional approach can be based on the conditions specific to the respective region and the data for this region which is contained in country statistics. This makes the results more resilient. It also appears that LUC is mainly caused locally or regionally. Relevant policy scenarios for different regions were calculated with a regional model. The calculations show reliable results. It is possible to introduce such a regional model in regulations for combating iLUC. The analysis of the policy options for combating iLUC shows that a regional approach would have a much more effective steering effect.


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Júnior Melo Damian ◽  
Mariana Regina Durigan ◽  
Maurício Roberto Cherubin ◽  
Stoécio Malta Ferreira Maia ◽  
Stephen M. Ogle ◽  
...  

GCB Bioenergy ◽  
2016 ◽  
Vol 9 (3) ◽  
pp. 627-644 ◽  
Author(s):  
Mark Richards ◽  
Mark Pogson ◽  
Marta Dondini ◽  
Edward O. Jones ◽  
Astley Hastings ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document