Pharmaceuticals and personal care products (PPCPs) in Australia's largest inland sewage treatment plant, and its contribution to a major Australian river during high and low flow

2016 ◽  
Vol 541 ◽  
pp. 1625-1637 ◽  
Author(s):  
Jenna Roberts ◽  
Anupama Kumar ◽  
Jun Du ◽  
Christopher Hepplewhite ◽  
David J. Ellis ◽  
...  
2020 ◽  
Vol 51 (5) ◽  
pp. 911-924
Author(s):  
Jin Wu ◽  
Jingchao Liu ◽  
Zenghui Pan ◽  
Boxin Wang ◽  
Dasheng Zhang

Abstract The contamination of surface water by pharmaceuticals and personal care products (PPCPs) has attracted widespread attention, but data regarding their impacts on groundwater (GW) are sparse. In river–GW interaction areas, rivers are likely an important source of PPCPs in aquifers, especially rivers impacted by sewage treatment plant effluent. Understanding the characterization, transport, and risk is valuable for the effective protection of vital aquatic ecosystem services, environmental health, and drinking water supplies. To attain this objective, statistics with spatial analysis and ecological risk were used to assess the effects of artificial recharge (AR) engineering on 16 PPCPs in aquifers in North China. The results indicated that 15 PPCPs were detected in unconfined and confined aquifers, with a few PPCPs being detected up to 1,000 ng/L. The most frequently detected PPCPs were sulfisoxazole, sulfachloropyridazine, sulfamerazine, sulfamethazine, sulfamethoxazole, and ibuprofen. In addition, the spatial and seasonal variations in most PPCPs were significant. Furthermore, the maximum concentrations were compared to the predicted no-effect concentrations to evaluate the ecological risk, and four PPCPs were found to be of medium or high ecological risk. This study highlights that AR engineering has a significant ecological effect on GW.


2020 ◽  
Vol 15 (2) ◽  
pp. 142-151
Author(s):  
Peter Lukac ◽  
Lubos Jurik

Abstract:Phosphorus is a major substance that is needed especially for agricultural production or for the industry. At the same time it is an important component of wastewater. At present, the waste management priority is recycling and this requirement is also transferred to wastewater treatment plants. Substances in wastewater can be recovered and utilized. In Europe (in Germany and Austria already legally binding), access to phosphorus-containing sewage treatment is changing. This paper dealt with the issue of phosphorus on the sewage treatment plant in Nitra. There are several industrial areas in Nitra where record major producers in phosphorus production in sewage. The new wastewater treatment plant is built as a mechanicalbiological wastewater treatment plant with simultaneous nitrification and denitrification, sludge regeneration, an anaerobic zone for biological phosphorus removal at the beginning of the process and chemical phosphorus precipitation. The sludge management is anaerobic sludge stabilization with heating and mechanical dewatering of stabilized sludge and gas management. The aim of the work was to document the phosphorus balance in all parts of the wastewater treatment plant - from the inflow of raw water to the outflow of purified water and the production of excess sludge. Balancing quantities in the wastewater treatment plant treatment processes provide information where efficient phosphorus recovery could be possible. The mean daily value of P tot is approximately 122.3 kg/day of these two sources. The mean daily value of P tot is approximately 122.3 kg/day of these two sources. There are also two outflows - drainage of cleaned water to the recipient - the river Nitra - 9.9 kg Ptot/day and Ptot content in sewage sludge - about 120.3 kg Ptot/day - total 130.2 kg Ptot/day.


2008 ◽  
Vol 37 (2) ◽  
Author(s):  
Maciej Walczak

Changes of microbial indices of water quality in the Vistula and Brda rivers as a result of sewage treatment plant operationThis paper reports the results of studies of microbiological changes in the water quality of the Vistula and Brda rivers after the opening of sewage treatment plants in Bydgoszcz. The study involved determining the microbiological parameters of water quality. Based on the results obtained, it was found that the quality of the water in both rivers had improved decidedly after the opening of the plants, although an increased number of individual groups of microorganisms was found at the treated sewage outlet from one of the plants.


2000 ◽  
Vol 36 (4) ◽  
pp. 161-171
Author(s):  
KENITSU KONNO ◽  
NAOKI ABE ◽  
YOSHIRO SATO ◽  
KOJI AKAMATSU ◽  
MAKOTO ABE ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document