Mechanistic investigation of industrial wastewater naphthenic acids removal using granular activated carbon (GAC) biofilm based processes

2016 ◽  
Vol 541 ◽  
pp. 238-246 ◽  
Author(s):  
Md. Shahinoor Islam ◽  
Yanyan Zhang ◽  
Kerry N. McPhedran ◽  
Yang Liu ◽  
Mohamed Gamal El-Din
2015 ◽  
Vol 33 (10) ◽  
pp. 881-894 ◽  
Author(s):  
Alfredo Martinez-Iglesias ◽  
Hojatallah Seyedy Niasar ◽  
Chunbao (Charles) Xu ◽  
Madhumita B. Ray

2015 ◽  
Vol 81 (12) ◽  
pp. 4037-4048 ◽  
Author(s):  
M. Shahinoor Islam ◽  
Yanyan Zhang ◽  
Kerry N. McPhedran ◽  
Yang Liu ◽  
Mohamed Gamal El-Din

ABSTRACTThe development of biodegradation treatment processes for oil sands process-affected water (OSPW) has been progressing in recent years with the promising potential of biofilm reactors. Previously, the granular activated carbon (GAC) biofilm process was successfully employed for treatment of a large variety of recalcitrant organic compounds in domestic and industrial wastewaters. In this study, GAC biofilm microbial development and degradation efficiency were investigated for OSPW treatment by monitoring the biofilm growth on the GAC surface in raw and ozonated OSPW in batch bioreactors. The GAC biofilm community was characterized using a next-generation 16S rRNA gene pyrosequencing technique that revealed that the phylumProteobacteriawas dominant in both OSPW and biofilms, with further in-depth analysis showing higher abundances ofAlpha- andGammaproteobacteriasequences. Interestingly, many known polyaromatic hydrocarbon degraders, namely,Burkholderiales,Pseudomonadales,Bdellovibrionales, andSphingomonadales, were observed in the GAC biofilm. Ozonation decreased the microbial diversity in planktonic OSPW but increased the microbial diversity in the GAC biofilms. Quantitative real-time PCR revealed similar bacterial gene copy numbers (>109gene copies/g of GAC) for both raw and ozonated OSPW GAC biofilms. The observed rates of removal of naphthenic acids (NAs) over the 2-day experiments for the GAC biofilm treatments of raw and ozonated OSPW were 31% and 66%, respectively. Overall, a relatively low ozone dose (30 mg of O3/liter utilized) combined with GAC biofilm treatment significantly increased NA removal rates. The treatment of OSPW in bioreactors using GAC biofilms is a promising technology for the reduction of recalcitrant OSPW organic compounds.


2020 ◽  
Author(s):  
Feng Xiao ◽  
Bin Yao ◽  
Pavankumar Challa Sasi ◽  
Svetlana Golovko ◽  
Dana Soli ◽  
...  

2002 ◽  
Vol 2 (1) ◽  
pp. 233-240 ◽  
Author(s):  
J. Cromphout ◽  
W. Rougge

In Harelbeke a Water Treatment Plant with a capacity of 15,000 m3/day, using Schelde river water has been in operation since April 1995. The treatment process comprises nitrification, dephosphatation by direct filtration, storage into a reservoir, direct filtration, granular activated carbon filtration and disinfection. The design of the three-layer direct filters was based on pilot experiments. The performance of the plant during the five years of operation is discussed. It was found that the removal of atrazin by activated carbon depends on the water temperature.


2017 ◽  
Author(s):  
Zachary L. Oretsky ◽  
◽  
Daniel Lehrmann ◽  
Geary M. Schindel

Sign in / Sign up

Export Citation Format

Share Document