scholarly journals Sampling of suspended particulate matter using particle traps in the Rhône River: Relevance and representativeness for the monitoring of contaminants

2018 ◽  
Vol 637-638 ◽  
pp. 538-549 ◽  
Author(s):  
M. Masson ◽  
H. Angot ◽  
C. Le Bescond ◽  
M. Launay ◽  
A. Dabrin ◽  
...  
2016 ◽  
Vol 13 (5) ◽  
pp. 804 ◽  
Author(s):  
Danielle L. Slomberg ◽  
Patrick Ollivier ◽  
Olivier Radakovitch ◽  
Nicole Baran ◽  
Nicole Sani-Kast ◽  
...  

Environmental contextThe fate and behaviour of pollutants such as pesticides, metals and nanoparticles in natural waters will influence their effects on the environment and human health. Owing to the complexity of natural waters and suspended particulate matter (SPM) that can interact with pollutants, as well as low pollutant concentrations, determination of pollutant fate and transport is non-trivial. Herein, we report a characterisation of the Rhone River chemistry to provide insight into selecting SPM analogues for experimental and modelling approaches. AbstractSelection of realistic suspended particulate matter (SPM) analogues remains vital for realising representative experimental and modelling approaches in predicting the environmental fate of pollutants. Here, we present the characterisation of dissolved-ion and SPM compositions for nine sampling sites over the length of the Rhone River. Dissolved-ion concentrations remained stable, but SPM concentrations varied among sampling sites. Size fractionation and mineralogical characterisation of the SPM revealed that the same minerals (e.g. quartz, calcite, muscovite) constituted every size class from 0.5 to >50µm, as is usually found with allochthonous and large-scale systems. To gain insight into SPM analogue selection, aggregation kinetics of silica, calcite, muscovite, feldspars and clays were monitored in the native filtrate and related to the respective zeta potentials (ζ). An SPM mixture of calcite (49%), muscovite (14%), feldspar (23%) and chlorite (14%) proved the best match for the Rhone SPM, demonstrating that mineral surface chemistry, structure and size are all important in selecting a realistic SPM analogue for a riverine system.


1998 ◽  
Vol 38 (6) ◽  
pp. 327-335
Author(s):  
Yasunori Kozuki ◽  
Yoshihiko Hosoi ◽  
Hitoshi Murakami ◽  
Katuhiro Kawamoto

In order to clarify the origin and behavior of suspended particulate matter (SPM) in a tidal river, variation of SPM in a tidal river was investigated with regard to its size and constituents. SPM was separated into three groups according to size. Change of contents of titanium and organic substances of each group of SPM was examined. SPM which was discharged by run-off was transported with decomposition and sedimentation in a tidal river. Concentration of SPM with a particle size greater than 0.45 μm increased due to resuspension in a tidal river. Origin of SPM with a size of less than 0.45 μm at upstream areas was from natural soil and most of such SPM which had been transported settled near a river mouth. It was determined from examination of the CN ratio and the ratio of the number of attached bacteria to free bacteria that SPM with a size greater than 1.0 μm at upstream areas was decomposing intensively. At the downstream areas, SPM with a size of less than 0.45 μm came from the sea. SPM with particle size greater than 1.0 μm consisted of plankton and substances which were decomposed sufficiently while flowing.


Sign in / Sign up

Export Citation Format

Share Document