Modelling the transport of suspended particulate matter by the Rhone River plume (France). Implications for pollutant dispersion

2005 ◽  
Vol 133 (2) ◽  
pp. 351-364 ◽  
Author(s):  
R. Periáñez
2016 ◽  
Vol 13 (5) ◽  
pp. 804 ◽  
Author(s):  
Danielle L. Slomberg ◽  
Patrick Ollivier ◽  
Olivier Radakovitch ◽  
Nicole Baran ◽  
Nicole Sani-Kast ◽  
...  

Environmental contextThe fate and behaviour of pollutants such as pesticides, metals and nanoparticles in natural waters will influence their effects on the environment and human health. Owing to the complexity of natural waters and suspended particulate matter (SPM) that can interact with pollutants, as well as low pollutant concentrations, determination of pollutant fate and transport is non-trivial. Herein, we report a characterisation of the Rhone River chemistry to provide insight into selecting SPM analogues for experimental and modelling approaches. AbstractSelection of realistic suspended particulate matter (SPM) analogues remains vital for realising representative experimental and modelling approaches in predicting the environmental fate of pollutants. Here, we present the characterisation of dissolved-ion and SPM compositions for nine sampling sites over the length of the Rhone River. Dissolved-ion concentrations remained stable, but SPM concentrations varied among sampling sites. Size fractionation and mineralogical characterisation of the SPM revealed that the same minerals (e.g. quartz, calcite, muscovite) constituted every size class from 0.5 to >50µm, as is usually found with allochthonous and large-scale systems. To gain insight into SPM analogue selection, aggregation kinetics of silica, calcite, muscovite, feldspars and clays were monitored in the native filtrate and related to the respective zeta potentials (ζ). An SPM mixture of calcite (49%), muscovite (14%), feldspar (23%) and chlorite (14%) proved the best match for the Rhone SPM, demonstrating that mineral surface chemistry, structure and size are all important in selecting a realistic SPM analogue for a riverine system.


2021 ◽  
Author(s):  
Violaine Piton ◽  
Frédéric Soulignac ◽  
Ulrich Lemmin ◽  
Graf Benjamin ◽  
Htet Kyi Wynn ◽  
...  

<p>River inflows have a major influence on lake water quality through their input of sediments, nutrients and contaminants. It is therefore essential to determine their pathways, their mixing with ambient waters and the amount and type of Suspended Particulate Matter (SPM) they carry. Two field campaigns during the stratified period took place in Lake Geneva, Switzerland, in the vicinity of the Rhône River plume, at high and intermediate river discharge. Currents, water and sediment fluxes, temperature, turbidity and particle size distribution were measured along three circular transects located at 400, 800 and 1500 m in front of the river mouth. During the surveys, the lake was thermally stratified, the negatively buoyant Rhône River plume plunged and intruded into the metalimnion as an interflow and flowed out in the streamwise direction. Along the pathway, interflow core velocities, SPM concentrations and volumes of particles progressively decreased with the distance from the mouth (by 2-3 times), while interflow cross sections and plume volume increased by 2-3 times due to entrainment of ambient water. The characteristics of the river outflow determined the characteristics of the interflows: i.e. interflow fluxes and concentrations were the highest at high discharge. Both sediment settling and interflow dilution contributed to the observed decrease of sediment discharge with distance from the mouth. The particle size distribution of the interflow was dominated by fine particles (<32 μm), which were transported up to 1500 m away from the mouth and most likely beyond, while large particles (>62 μm) have almost completely settled out before reaching 1500 m. </p>


Sign in / Sign up

Export Citation Format

Share Document