Mercury transport and fate models in aquatic systems: A review and synthesis

2018 ◽  
Vol 639 ◽  
pp. 538-549 ◽  
Author(s):  
Senlin Zhu ◽  
Zhonglong Zhang ◽  
Dušan Žagar
2004 ◽  
Vol 33 (2) ◽  
pp. 559 ◽  
Author(s):  
Yiqiang Zhang ◽  
Zahir A. Zahir ◽  
William T. Frankenberger

Author(s):  
Dean Jacobsen ◽  
Olivier Dangles

Chapter 2 presents the amazing variety of running waters, lakes, ponds, and wetlands found at high altitudes. These waterbodies are not equally distributed among the world’s high altitude places, but tend to be concentrated in certain areas, primarily determined by regional climate and topography. Thus, a large proportion of the world’s truly high altitude aquatic systems are found at lower latitudes, mostly in the tropics. The chapter presents general patterns in the geographical distribution of high altitude waters, and gives examples of some of the most extreme systems. High altitude aquatic systems and habitats cover a broad variety in dynamics and physical appearance. These differences may be related to, for example, water source (glacier-fed, rain-fed, or groundwater-fed streams), geological origin (e.g. glacial, volcanic, or tectonic lakes), or catchment slope and altitude (different types of peatland wetlands). This is exemplified and richly illustrated through numerous photos.


2006 ◽  
Vol 567 (2) ◽  
pp. 152-159 ◽  
Author(s):  
André Henrique Rosa ◽  
Iramaia C. Bellin ◽  
Danielle Goveia ◽  
Luciana C. Oliveira ◽  
Roberto W. Lourenço ◽  
...  

Author(s):  
Chuan-Wang Yang ◽  
Li Yuan ◽  
Hong-Zhi Zhou ◽  
Xin Zhang ◽  
Guo-Ping Sheng

Natural organic matter (NOM) can adsorb onto engineered nanoparticles (ENPs) and form NOM-corona on ENPs-solution interface, thus affecting the performance and ecotoxicity of ENPs in aquatic systems. Nevertheless, the formation...


Toxics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 172
Author(s):  
Laura Fantozzi ◽  
Nicoletta Guerrieri ◽  
Giovanni Manca ◽  
Arianna Orrù ◽  
Laura Marziali

We present the first assessment of atmospheric pollution by mercury (Hg) in an industrialized area located in the Ossola Valley (Italian Central Alps), in close proximity to the Toce River. The study area suffers from a level of Hg contamination due to a Hg cell chlor-alkali plant operating from 1915 to the end of 2017. We measured gaseous elemental Hg (GEM) levels by means of a portable Hg analyzer during car surveys between autumn 2018 and summer 2020. Moreover, we assessed the long-term dispersion pattern of atmospheric Hg by analyzing the total Hg concentration in samples of lichens collected in the Ossola Valley. High values of GEM concentrations (1112 ng m−3) up to three orders of magnitude higher than the typical terrestrial background concentration in the northern hemisphere were measured in the proximity of the chlor-alkali plant. Hg concentrations in lichens ranged from 142 ng g−1 at sampling sites located north of the chlor-alkali plant to 624 ng g−1 in lichens collected south of the chlor-alkali plant. A north-south gradient of Hg accumulation in lichens along the Ossola Valley channel was observed, highlighting that the area located south of the chlor-alkali plant is more exposed to the dispersion of Hg emitted into the atmosphere from the industrial site. Long-term studies on Hg emission and dispersion in the Ossola Valley are needed to better assess potential impact on ecosystems and human health.


2015 ◽  
Vol 23 (4) ◽  
pp. 443-460 ◽  
Author(s):  
Michael J. Lawrence ◽  
Holly L.J. Stemberger ◽  
Aaron J. Zolderdo ◽  
Daniel P. Struthers ◽  
Steven J. Cooke

War is an ever-present force that has the potential to alter the biosphere. Here we review the potential consequences of modern war and military activities on ecosystem structure and function. We focus on the effects of direct conflict, nuclear weapons, military training, and military produced contaminants. Overall, the aforementioned activities were found to have overwhelmingly negative effects on ecosystem structure and function. Dramatic habitat alteration, environmental pollution, and disturbance contributed to population declines and biodiversity losses arising from both acute and chronic effects in both terrestrial and aquatic systems. In some instances, even in the face of massive alterations to ecosystem structure, recovery was possible. Interestingly, military activity was beneficial under specific conditions, such as when an exclusion zone was generated that generally resulted in population increases and (or) population recovery; an observation noted in both terrestrial and aquatic systems. Additionally, military technological advances (e.g., GPS technology, drone technology, biotelemetry) have provided conservation scientists with novel tools for research. Because of the challenges associated with conducting research in areas with military activities (e.g., restricted access, hazardous conditions), information pertaining to military impacts on the environment are relatively scarce and are often studied years after military activities have ceased and with no knowledge of baseline conditions. Additional research would help to elucidate the environmental consequences (positive and negative) and thus reveal opportunities for mitigating negative effects while informing the development of optimal strategies for rehabilitation and recovery.


Sign in / Sign up

Export Citation Format

Share Document