Role of cyclic diguanylate in affecting microbial community shifts at different pH during the operation of simultaneous partial nitrification, anammox and denitrification process

2018 ◽  
Vol 637-638 ◽  
pp. 155-162 ◽  
Author(s):  
Chao Wang ◽  
Sitong Liu ◽  
Xiaochen Xu ◽  
Yongzhao Guo ◽  
Fenglin Yang ◽  
...  
2019 ◽  
Vol 116 (25) ◽  
pp. 12558-12565 ◽  
Author(s):  
Mathias J. E. E. E. Voges ◽  
Yang Bai ◽  
Paul Schulze-Lefert ◽  
Elizabeth S. Sattely

The factors that contribute to the composition of the root microbiome and, in turn, affect plant fitness are not well understood. Recent work has highlighted a major contribution of the soil inoculum in determining the composition of the root microbiome. However, plants are known to conditionally exude a diverse array of unique secondary metabolites, that vary among species and environmental conditions and can interact with the surrounding biota. Here, we explore the role of specialized metabolites in dictating which bacteria reside in the rhizosphere. We employed a reduced synthetic community (SynCom) of Arabidopsis thaliana root-isolated bacteria to detect community shifts that occur in the absence of the secreted small-molecule phytoalexins, flavonoids, and coumarins. We find that lack of coumarin biosynthesis in f6′h1 mutant plant lines causes a shift in the root microbial community specifically under iron deficiency. We demonstrate a potential role for iron-mobilizing coumarins in sculpting the A. thaliana root bacterial community by inhibiting the proliferation of a relatively abundant Pseudomonas species via a redox-mediated mechanism. This work establishes a systematic approach enabling elucidation of specific mechanisms by which plant-derived molecules mediate microbial community composition. Our findings expand on the function of conditionally exuded specialized metabolites and suggest avenues to effectively engineer the rhizosphere with the aim of improving crop growth in iron-limited alkaline soils, which make up a third of the world’s arable soils.


2013 ◽  
Vol 807-809 ◽  
pp. 1564-1569
Author(s):  
Xiao Jing Zhang ◽  
Dong Li ◽  
Yu Long Zhang ◽  
Yong Ping He ◽  
Jie Zhang

Partial nitrification (PN) was rapidly started-up in a sequencing batch membrane bioreactor (MBR) treating domestic wastewater with low temperature (11~15°C), the influence of alkalinity on PN process and the feasibility to control the ratio of nitrite to ammonia in effluent were investigated through changing the ratio of Alkalinity/ammonia in influent. Results showed that effluent ratio can be controlled flexibly with the liner relationship between ammonia conversion and the ratio of alkalinity to ammonia when alkalinity is insufficient, whereas, that could be effectively achieved by the indicator role of alkalinity on nitrite. Phylogenetic results indicated the predominance ofNitrosomonasand the absence of theNitrosospirain the condition of insufficient alkalinity, which was consistent with the SEM results. FISH results suggested that lack of alkalinity presented little impact on the relative quantity of AOB.


mBio ◽  
2013 ◽  
Vol 4 (2) ◽  
Author(s):  
Jizhong Zhou ◽  
Wenzong Liu ◽  
Ye Deng ◽  
Yi-Huei Jiang ◽  
Kai Xue ◽  
...  

ABSTRACTThe processes and mechanisms of community assembly and its relationships to community functioning are central issues in ecology. Both deterministic and stochastic factors play important roles in shaping community composition and structure, but the connection between community assembly and ecosystem functioning remains elusive, especially in microbial communities. Here, we used microbial electrolysis cell reactors as a model system to examine the roles of stochastic assembly in determining microbial community structure and functions. Under identical environmental conditions with the same source community, ecological drift (i.e., initial stochastic colonization) and subsequent biotic interactions created dramatically different communities with little overlap among 14 identical reactors, indicating that stochastic assembly played dominant roles in determining microbial community structure. Neutral community modeling analysis revealed that deterministic factors also played significant roles in shaping microbial community structure in these reactors. Most importantly, the newly formed communities differed substantially in community functions (e.g., H2production), which showed strong linkages to community structure. This study is the first to demonstrate that stochastic assembly plays a dominant role in determining not only community structure but also ecosystem functions. Elucidating the links among community assembly, biodiversity, and ecosystem functioning is critical to understanding ecosystem functioning, biodiversity preservation, and ecosystem management.IMPORTANCEMicroorganisms are the most diverse group of life known on earth. Although it is well documented that microbial natural biodiversity is extremely high, it is not clear why such high diversity is generated and maintained. Numerous studies have established the roles of niche-based deterministic factors (e.g., pH, temperature, and salt) in shaping microbial biodiversity, the importance of stochastic processes in generating microbial biodiversity is rarely appreciated. Moreover, while microorganisms mediate many ecosystem processes, the relationship between microbial diversity and ecosystem functioning remains largely elusive. Using a well-controlled laboratory system, this study provides empirical support for the dominant role of stochastic assembly in creating variations of microbial diversity and the first explicit evidence for the critical role of community assembly in influencing ecosystem functioning. The results presented in this study represent important contributions to the understanding of the mechanisms, especially stochastic processes, involved in shaping microbial biodiversity.


Sign in / Sign up

Export Citation Format

Share Document