Environmental impact of personal consumption from life cycle perspective – A Czech Republic case study

2019 ◽  
Vol 646 ◽  
pp. 177-186 ◽  
Author(s):  
Jan Matuštík ◽  
Vladimír Kočí
Author(s):  
Xun Li ◽  
Pablo Ortiz ◽  
Brandon Kuczenski ◽  
Diana Franklin ◽  
Frederic T. Chong

The rapid growth of information technology has not only brought substantial economic and societal benefit but also led to an unsustainable disposable model in which mobile devices are replaced in a matter of months. The environmental impact of this stream of handsets in terms of manufacturing energy, materials, and disposal costs is alarming. This chapter aims at raising today’s environmental issues of the increasing smartphone market, as well as providing a quantitative analysis on the environmental impact of different life-cycle stages of the smartphones, including the manufacturing stage, using stage, and recycling. To achieve sustainable computing and best utilize the energy consumed during manufacturing the large number of devices, this chapter demonstrates the methodology and techniques towards reusing smartphones by presenting a case study on reusing smartphones for elementary school education.


2018 ◽  
Vol 10 (6) ◽  
pp. 1810 ◽  
Author(s):  
Weiguo Fan ◽  
Peng Zhang ◽  
Zihan Xu ◽  
Hejie Wei ◽  
Nachuan Lu ◽  
...  

2019 ◽  
Vol 7 (10) ◽  
pp. 359 ◽  
Author(s):  
Hwang ◽  
Jeong ◽  
Jung ◽  
Kim ◽  
Zhou

This research was focused on a comparative analysis of using LNG as a marine fuel with a conventional marine gas oil (MGO) from an environmental point of view. A case study was performed using a 50K bulk carrier engaged in domestic services in South Korea. Considering the energy exporting market for South Korea, the fuel supply chain was designed with the two largest suppliers: Middle East (LNG-Qatar/MGO-Saudi Arabia) and U.S. The life cycle of each fuel type was categorized into three stages: Well-to-Tank (WtT), Tank-to-Wake (TtW), and Well-to-Wake (WtW). With the process modelling, the environmental impact of each stage was analyzed based on the five environmental impact categorizes: Global Warming Potential (GWP), Acidification Potential (AP), Photochemical Potential (POCP), Eutrophication Potential (EP) and Particulate Matter (PM). Analysis results reveal that emission levels for the LNG cases are significantly lower than the MGO cases in all potential impact categories. Particularly, Case 1 (LNG import to Korea from Qatar) is identified as the best option as producing the lowest emission levels per 1.0 × 107 MJ of fuel consumption: 977 tonnages of CO2 equivalent (for GWP), 1.76 tonnages of SO2 equivalent (for AP), 1.18 tonnages of N equivalent (for EP), 4.28 tonnages of NMVOC equivalent (for POCP) and 26 kg of PM 2.5 equivalent (for PM). On the other hand, the results also point out that the selection of the fuel supply routes could be an important factor contributing to emission levels since longer distances for freight transportation result in more emissions. It is worth noting that the life cycle assessment can offer us better understanding of holistic emission levels contributed by marine fuels from the cradle to the grave, which are highly believed to remedy the shortcomings of current marine emission indicators.


2015 ◽  
Vol 135 ◽  
pp. 77-89 ◽  
Author(s):  
Sophie Huysveld ◽  
Veerle Van linden ◽  
Steven De Meester ◽  
Nico Peiren ◽  
Hilde Muylle ◽  
...  

2013 ◽  
Vol 6 (5) ◽  
pp. 832-843 ◽  
Author(s):  
F. R. M. Oliveira ◽  
M. G. Silva ◽  
V. Gomes

This paper aims at advancing on the validation of indicators of building concrete frames' sustainability from an integrated, life cycle perspective. A case study approach investigates (i) feasibility of comparing sustainability performance of different flooring systems; and (ii) similarity between environmental indicators trends for a typical flooring system and corresponding whole superstructure. Three residential buildings are analyzed, using either prestressed concrete flat (PCF) slabs or reinforced concrete waffle (RCW) slabs and flat beams exposed to a marine environment. SimaPro 7.3 supports calculation of the environmental indicators. Service life estimation is used to ensure functional equivalence and to form a basis for life cycle costing. PCF slabs showed best functional/technical and economic results but were outperformed by RCW slabs' environmental results. Most environmental indicators showed the same trend for both typical floor and whole superstructure.


Sign in / Sign up

Export Citation Format

Share Document