Assessing the spatial and temporal variability of bacterial communities in two Bardenpho wastewater treatment systems via Illumina MiSeq sequencing

2019 ◽  
Vol 657 ◽  
pp. 1543-1552 ◽  
Author(s):  
Jia Xue ◽  
Bradley W. Schmitz ◽  
Kevin Caton ◽  
Bowen Zhang ◽  
Jovanny Zabaleta ◽  
...  
2021 ◽  
Vol 13 (13) ◽  
pp. 7358
Author(s):  
Dong-Hyun Kim ◽  
Hyun-Sik Yun ◽  
Young-Saeng Kim ◽  
Jong-Guk Kim

This study analyzed the microbial community metagenomically to determine the cause of the functionality of a livestock wastewater treatment facility that can effectively remove pollutants, such as ammonia and hydrogen sulfide. Illumina MiSeq sequencing was used in analyzing the composition and structure of the microbial community, and the 16S rRNA gene was used. Through Illumina MiSeq sequencing, information such as diversity indicators as well as the composition and structure of microbial communities present in the livestock wastewater treatment facility were obtained, and differences between microbial communities present in the investigated samples were compared. The number of reads, operational taxonomic units, and species richness were lower in influent sample (NLF), where the wastewater enters, than in effluent sample (NL), in which treated wastewater is found. This difference was greater in June 2019 than in January 2020, and the removal rates of ammonia (86.93%) and hydrogen sulfide (99.72%) were also higher in June 2019. In both areas, the community composition was similar in January 2020, whereas the influent sample (NLF) and effluent sample (NL) areas in June 2019 were dominated by Proteobacteria (76.23%) and Firmicutes (67.13%), respectively. Oleiphilaceae (40.89%) and Thioalkalibacteraceae (12.91%), which are related to ammonia and hydrogen sulfide removal, respectively, were identified in influent sample (NLF) in June 2019. They were more abundant in June 2019 than in January 2020. Therefore, the functionality of the livestock wastewater treatment facility was affected by characteristics, including the composition of the microbial community. Compared to Illumina MiSeq sequencing, fewer species were isolated and identified in both areas using culture-based methods, suggesting Illumina MiSeq sequencing as a powerful tool to determine the relevance of microbial communities for pollutant removal.


2020 ◽  
Vol 20 (5) ◽  
pp. 966-980
Author(s):  
Maneet Kumar Chakrawarti ◽  
Madhuri Singh ◽  
Vijay Pal Yadav ◽  
Kasturi Mukhopadhyay

2021 ◽  
Vol 67 (No. 12) ◽  
pp. 721-728
Author(s):  
Jibo Shi ◽  
Xiaoya Gong ◽  
Muhammad Khashi u Rahman ◽  
Qing Tian ◽  
Xingang Zhou ◽  
...  

In this study, we investigated the effects of wheat root exudates on soil bacterial communities in the watermelon rhizosphere using quantitative PCR and Illumina MiSeq sequencing. The qPCR results showed that wheat root exudates significantly increased the abundance of total bacteria, Pseudomonas, Bacillus and Streptomyces spp. Illumina MiSeq sequencing results showed that wheat root exudates significantly changed the bacterial community structure and composition. These results indicated that plant root exudates play a role in plant-to-plant signalling, strongly affect the microbial community composition.  


Parasitology ◽  
2018 ◽  
Vol 146 (4) ◽  
pp. 533-542 ◽  
Author(s):  
O. Benedicenti ◽  
C. J. Secombes ◽  
C. Collins

AbstractPopulation growth,in vitro, of threeParamoeba peruranscultures, one polyclonal (G) and two clonal (B8, CE6, derived from G), previously shown to differ in virulence (B8 > G > CE6), was compared at 10 and 15 °C. B8 showed a significantly higher increase in attached and in suspended amoebae over time at 15 and 10 °C, respectively. CE6 and G also had significantly higher numbers of suspended amoebae at 10 °C compared with 15 °C at experiment termination. However, in contrast to B8, numbers of attached amoebae were significantly higher at 10 °C in CE6 but showed a similar trend in G at the end of the experiment. Numbers of both suspended and attached amoebae were lower in B8 compared with CE6 and G. Significant differences in bacterial community composition and/or relative abundances were found, between cultures, between temperatures and between the same culture with and without amoebae, based on 16S rRNA Illumina MiSeq sequencing. Bacterial diversity was lower in B8 and CE6 compared with G, possibly reflecting selection during clonal isolation. The results indicate that polyclonalP. peruranspopulations may contain amoebae displaying different growth dynamics. Further studies are required to determine if these differences are linked to differences seen in the bacterial communities.


Sign in / Sign up

Export Citation Format

Share Document