Plant communities control long term carbon accumulation and biogeochemical gradients in a Patagonian bog

2019 ◽  
Vol 684 ◽  
pp. 670-681 ◽  
Author(s):  
Paul J.H. Mathijssen ◽  
Mariusz Gałka ◽  
Werner Borken ◽  
Klaus-Holger Knorr
2015 ◽  
Vol 12 (13) ◽  
pp. 10271-10310
Author(s):  
E. Varolo ◽  
D. Zanotelli ◽  
M. Tagliavini ◽  
S. Zerbe ◽  
L. Montagnani

Abstract. Current glacier retreat allows vast mountain ranges available for vegetation establishment and growth. Little is known about the effective carbon (C) budget of these new ecosystems and how the presence of different vegetation communities, characterized by their specific physiology and life forms influences C fluxes. In this study, using a comparative analysis of the C fluxes of two contrasting vegetation types, we intend to evaluate if the different physiologies of the main species have an effect on Ecosystem Respiration (Reco), Gross Primary Production (GPP), annual cumulated Net Ecosystem Exchange (NEE), and long-term carbon accumulation in soil. The NEE of two plant communities present on a Little Ice Age moraine in the Matsch glacier forefield (Alps, Italy) was measured over two growing seasons. They are a typical C3 grassland, dominated by Festuca halleri All. and a community dominated by CAM rosettes Sempervivum montanum L. on rocky soils. Using transparent and opaque chambers, we extrapolated the ecophysiological responses to the main environmental drivers and performed the partition of NEE into Reco and GPP. Soil samples were collected from the same site to measure long-term C accumulation in the ecosystem. The two communities showed contrasting GPP but similar Reco patterns and as a result significantly different in NEE. The grassland acted mainly as a carbon sink with a total cumulated value of −46.4 ± 35.5 g C m−2 NEE while the plots dominated by the CAM rosettes acted as a source with 31.9 ± 22.4 g C m−2. In spite of the NEE being different in the two plant communities, soil analysis did not reveal significant differences in carbon accumulation. Grasslands showed 1.76 ± 0.12 kg C m−2, while CAM rosettes showed 2.06 ± 0.23 kg C m−2. This study demonstrates that carbon dynamics of two vegetation communities can be distinct even though the growing environment is similar. The physiological traits of the dominant species determine large differences in the carbon cycle. Therefore, to analyze NEE of any glacier forefield ecosystem, different functional traits of the vegetation communities must be taken into consideration. Moreover, to assess the net ecosystem carbon balance it is necessary to consider the lateral fluxes of carbon via animal consumption, winter respiration, and in a broader temporal perspective, the different stages characterizing the primary succession.


2012 ◽  
pp. 66-77 ◽  
Author(s):  
I. A. Lavrinenko ◽  
O. V. Lavrinenko ◽  
D. V. Dobrynin

The satellite images show that the area of marshes in the Kolokolkova bay was notstable during the period from 1973 up to 2011. Until 2010 it varied from 357 to 636 ha. After a severe storm happened on July 24–25, 2010 the total area of marshes was reduced up to 43–50 ha. The mean value of NDVI for studied marshes, reflecting the green biomass, varied from 0.13 to 0.32 before the storm in 2010, after the storm the NDVI decreased to 0.10, in 2011 — 0.03. A comparative analysis of species composition and structure of plant communities described in 2002 and 2011, allowed to evaluate the vegetation changes of marshes of the different topographic levels. They are fol­lowing: a total destruction of plant communities of the ass. Puccinellietum phryganodis and ass. Caricetum subspathaceae on low and middle marches; increasing role of halophytic species in plant communities of the ass. Caricetum glareosae vic. Calamagrostis deschampsioides subass. typicum on middle marches; some changes in species composition and structure of plant communities of the ass. Caricetum glareosae vic. Calamagrostis deschampsioides subass. festucetosum rubrae on high marches and ass. Parnassio palustris–Salicetum reptantis in transition zone between marches and tundra without changes of their syntaxonomy; a death of moss cover in plant communities of the ass. Caricetum mackenziei var. Warnstorfia exannulata on brackish coastal bogs. The possible reasons of dramatic vegetation dynamics are discussed. The dating of the storm makes it possible to observe the directions and rates of the succession of marches vegetation.


Land ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 824
Author(s):  
Egor Dyukarev ◽  
Evgeny Zarov ◽  
Pavel Alekseychik ◽  
Jelmer Nijp ◽  
Nina Filippova ◽  
...  

The peatlands of the West Siberian Lowlands, comprising the largest pristine peatland area of the world, have not previously been covered by continuous measurement and monitoring programs. The response of peatlands to climate change occurs over several decades. This paper summarizes the results of peatland carbon balance studies collected over ten years at the Mukhrino field station (Mukhrino FS, MFS) operating in the Middle Taiga Zone of Western Siberia. A multiscale approach was applied for the investigations of peatland carbon cycling. Carbon dioxide fluxes at the local scale studied using the chamber method showed net accumulation with rates from 110, to 57.8 gC m−2 at the Sphagnum hollow site. Net CO2 fluxes at the pine-dwarf shrubs-Sphagnum ridge varied from negative (−32.1 gC m−2 in 2019) to positive (13.4 gC m−2 in 2017). The cumulative May-August net ecosystem exchange (NEE) from eddy-covariance (EC) measurements at the ecosystem scale was −202 gC m−2 in 2015, due to the impact of photosynthesis of pine trees which was not registered by the chamber method. The net annual accumulation of carbon in the live part of mosses was estimated at 24–190 gC m−2 depending on the Sphagnum moss species. Long-term carbon accumulation rates obtained by radiocarbon analysis ranged from 28.5 to 57.2 gC m−2 yr−1, with local extremes of up to 176.2 gC m−2 yr−1. The obtained estimates of various carbon fluxes using EC and chamber methods, the accounting for Sphagnum growth and decomposition, and long-term peat accumulation provided information about the functioning of the peatland ecosystems at different spatial and temporal scales. Multiscale carbon flux monitoring reveals useful new information for forecasting the response of northern peatland carbon cycles to climatic changes.


The Holocene ◽  
2016 ◽  
Vol 27 (5) ◽  
pp. 651-664 ◽  
Author(s):  
Krystyna Milecka ◽  
Grzegorz Kowalewski ◽  
Barbara Fiałkiewicz-Kozieł ◽  
Mariusz Gałka ◽  
Mariusz Lamentowicz ◽  
...  

Wetlands are very vulnerable ecosystems and sensitive to changes in the ground water table. For the last few thousand years, hydrological balance has also been influenced by human activity. To improve their cropping features, drainage activity and fertilizing were applied. The drainage process led to an abrupt change of environment, the replacement of plant communities and the entire ecosystem. The problem of carbon sequestration is very important nowadays. A higher accumulation rate is related to higher carbon accumulation, but the intensity of carbon sequestration depends on the type of mire, habitat, and climatic zone. The main aim of this article was an examination of the changes in poor-fen ecosystem during the last 200 years in relation to natural and anthropogenic factors, using paleoecological methods (pollen and macrofossils). The second aim was a detailed investigation of the sedimentary record to aid our understanding of carbon sequestration in the poor fen of temperate zone. This case study shows that fens in temperate zones, in comparison with boreal ones, show higher carbon accumulation rates which have been especially intensive over the last few decades. To reconstruct vegetation changes, detailed palynological and macrofossil analyses were done. A 200-year history of the mire revealed that it was influenced by human activity to much degree. However, despite the nearby settlement and building of the drainage ditch, the precious species and plant communities still occur.


Koedoe ◽  
2008 ◽  
Vol 50 (1) ◽  
Author(s):  
Robert F. Brand ◽  
Pieter J. Du Preez ◽  
Leslie R. Brown

Within the Platberg area and the wider Drakensberg region, the shrinking natural resources and the threat posed to biodiversity are of concern to conservation management and require an understanding of long-term ecological processes. The vegetation of Platberg was investigated as part of an ecological survey to establish Afromontane floristic links to the Drakensberg as well as for the management of natural resources. From a TWINSPAN classification, refined by the Braun-Blanquet method, four main plant communities were identified, which were subdivided into fynbos, wetland, a woody/shrub community and grassland. A classification and description of the fynbos are presented in this article.The analysis showed the fynbos divided into two communities comprising four sub-communities and seven variants. The fynbos community had an average of 28.34 species per relevé, ranging from 14 to 54 species per sample plot. Twenty-four endemic or near-endemic Drakensberg Alpine Centre (DAC) species and 22 exotic (alien-invasive) species were recorded. Numerous floristic links with the DAC, Cape flora fynbos and grassland bioregions to the north and west were also found. The description of the fynbos plant communities can serve as a basis for the formulation of management plans for the area.


2014 ◽  
Vol 94 (1) ◽  
pp. 33-39 ◽  
Author(s):  
D. J. Thompson ◽  
W. D. Willms

Thompson, D. J. and Willms, W. D. 2014. Effects of long-term protection from grazing on phenotypic expression in geographically separated mountain rough fescue populations. Can. J. Plant Sci. 94: 33–39. Whether or not long-term grazing or protection from grazing alters the genetic makeup of grass populations has been debated. Mountain rough fescue [(Festuca campestris (Rydb.)], which is highly sensitive to summer grazing, and becomes dominant in plant communities with long-term protection, was chosen to address this question. Plants from three geographic sites (Stavely in AB, Milroy in the Kootenay trench, BC and Goose Lake on the BC interior plateau) with divergent grazing histories were vegetatively propagated from tillers. Daughter plants were planted into two field nurseries (at Kamloops, BC, and Stavely, AB) and morphological measurements were taken in two field seasons post-establishment. Plants from all three populations were taller, flowered earlier, and were more productive at the Kamloops nursery site. Of the three geographic sources, plants from the Goose Lake site were most distinct with narrower leaves, later flowering, and greater yield. Plants with a long history of grazing had slightly shorter fertile tillers and leaves than plants with a history of long-term protection.


Koedoe ◽  
2004 ◽  
Vol 47 (2) ◽  
Author(s):  
G. Cleaver ◽  
L.R. Brown ◽  
G.J. Bredenkamp

The Kammanassie Mountain is a declared mountain catchment area and a Cape mountain zebra Equus zebra zebra population is preserved on the mountain. The high number of springs on the mountain not only provides water for the animal species but also contributes to overall ecosystem functioning. Long-term conservation of viable ecosystems requires a broader understanding of the ecological processes involved. It was therefore decided that a classification, description and mapping of the spring vegetation of the Kammanassie Mountain be undertaken. A TWINSPAN classification, refined by Braun-Blanquet procedures, revealed 11 major plant communities that could be related to geological origin. Habitat factors associated with differences in vegetation include topography, soil type and grazing. Descriptions of the plant communities include diagnostic species as well as prominent and less conspicuous species of the tree, shrub and herbaceous layers. The results also indicate a high species richness compared to similar regions and the difference between plant communities of wet and dry springs. This data is important for long-term monitoring of the spring ecosystems as well as for the compilation of management plans.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Daniel N. Schillereff ◽  
Richard C. Chiverrell ◽  
Jenny K. Sjöström ◽  
Malin E. Kylander ◽  
John F. Boyle ◽  
...  

AbstractOmbrotrophic peatlands are a globally important carbon store and depend on atmospheric nutrient deposition to balance ecosystem productivity and microbial decomposition. Human activities have increased atmospheric nutrient fluxes, but the impacts of variability in phosphorus supply on carbon sequestration in ombrotrophic peatlands are unclear. Here, we synthesise phosphorus, nitrogen and carbon stoichiometric data in the surface and deeper layers of mid-latitude Sphagnum-dominated peatlands across Europe, North America and Chile. We find that long-term elevated phosphorus deposition and accumulation strongly correlate with increased organic matter decomposition and lower carbon accumulation in the catotelm. This contrasts with literature that finds short-term increases in phosphorus supply stimulates rapid carbon accumulation, suggesting phosphorus deposition imposes a threshold effect on net ecosystem productivity and carbon burial. We suggest phosphorus supply is an important, but overlooked, factor governing long-term carbon storage in ombrotrophic peatlands, raising the prospect that post-industrial phosphorus deposition may degrade this carbon sink.


Author(s):  
O.A. Anenkhonov ◽  
◽  
D.V. Sandanov ◽  
A.A. Zverev ◽  
A.Yu. Korolyuk ◽  
...  

The long-term soil temperature monitoring in the area of more than 550 km in length within the region of Transbaikalia has been carried out. Sites for the monitoring were represented by the forest-steppe vegetation of different ecotopological and ecogeographical patterns. It was revealed that the dynamics of temperature regimens are highly synchronized reflecting the macroclimatic unity of the region. The sufficiently higher heat supply on the southerly exposed slopes comparing to northerly exposed ones was demonstrated. The distinctness between soil temperature regimens in different sites was revealed and attributed to the size of forested patches within the forest-steppe landscape, as well as discrepancies between eco-geographical features of sites along the sublatitudinal gradient. Differences between the vegetation types that occurred on the northern and southern slopes as well as between key sites scattered throughout the region were underlined. These differences are suggested to be connected with the spatial differentiation of the soil temperature. It was established that vegetation on the southern slopes is relatively more homogeneous being related to the single class Cleistogenetea squarrosae, while on the northern slopes plant communities related to three classes were developed, namely steppe class Cleistogenetea squarrosae, and two forest classes – Rhytidio-Laricetea and Vaccinio-Piceetea.


Sign in / Sign up

Export Citation Format

Share Document