Where does land use matter most? Contrasting land use effects on river quality at different spatial scales

2020 ◽  
Vol 715 ◽  
pp. 134825 ◽  
Author(s):  
Grite Nelson Mwaijengo ◽  
Anna Msigwa ◽  
Karoli Nicholas Njau ◽  
Luc Brendonck ◽  
Bram Vanschoenwinkel
2016 ◽  
Author(s):  
Marleen de Blécourt ◽  
Marife D. Corre ◽  
Ekananda Paudel ◽  
Rhett D. Harrison ◽  
Rainer Brumme ◽  
...  

Abstract. Abstract. Presently, the lack of data on soil organic carbon (SOC) in relation to land-use types and biophysical characteristics prevents reliable estimates of carbon stocks in montane landscapes of mainland SE Asia. Our study, conducted in a 10,000-hectare landscape in Xishuangbanna, SW China, aimed at assessing the spatial variability in SOC and its relationships with land-use cover and key biophysical characteristics at multiple spatial scales. We sampled 27 one-hectare plots including 10 plots in mature forests, 11 plots in regenerating or highly disturbed forests, and six plots in open land including tea plantations or grasslands. We used a sampling design with a hierarchical structure. The landscape was first classified according to land-use types. Within each land-use type, sampling plots of 100 m × 100 m each were randomly selected, and within each plot we sampled nine subplots. This hierarchical sampling design allowed partitioning of the overall variance in SOC, vegetation, soil properties and topography that was accounted for by the variability among land-use types, among plots nested within land-use types, and within plots. SOC concentrations and stocks did not differ significantly across land-use types. The SOC stocks to a depth of 0.9 m were 177.6 ± 19.6 Mg C ha−1 in tea plantations, 199.5 ± 14.8 Mg C ha−1 in regenerating or highly disturbed forests, 228.6 ± 19.7 (SE)  Mg C ha−1 in mature forests, and 236.2 ± 13.7 Mg C ha−1 in grasslands. In this montane landscape, variability within plots accounted for more than 50 % of the overall variance in SOC. The relationships between SOC, biophysical characteristics and land-use types varied across spatial scales. Variability in SOC within plots was determined by tree basal area, litter layer carbon stocks and slope. Variability in SOC among plots in open land was influenced by land-use type – SOC concentrations and stocks in grasslands were higher than in tea plantations. In forests, the variability in SOC among plots was related to elevation. The scale-dependent relationships between SOC and its controlling factors demonstrate that studies which aim to investigate the land-use effects on SOC need an appropriate sampling design reflecting the controlling factors of SOC so that land-use effects will not be masked by the variability between and within sampling plots.


2005 ◽  
Vol 62 (6) ◽  
pp. 1309-1319 ◽  
Author(s):  
Geneviève M Carr ◽  
Patricia A Chambers ◽  
Antoine Morin

The ability of land use to replace water quality variables in predictive models of periphyton chlorophyll a was tested with a 21-year data set for Alberta rivers. Nutrients (total dissolved P and NO2 + NO3) explained 23%–24% of the variability in seasonal chlorophyll a, whereas land use (human population density) explained 25%–28% of the variability. The best models included the combination of total dissolved P and population density, explaining 32%–34% of periphyton chlorophyll a variability. However, analysis of variance of chlorophyll a by ecoregions and ecozones explained about as much variability (28%–30%), and the inclusion of an ecoregion term into the regression models showed a diminished importance of land use as a predictor of chlorophyll a, with best models based on the combination of nutrients and ecoregion and explaining up to 43%–44% of periphyton chlorophyll a variability. Within ecoregions, land use was sometimes a good surrogate for nutrient data in predicting chlorophyll a concentrations. Overall, land use is a suitable surrogate for nutrients in regression models for chlorophyll a, but its inclusion in general models may reflect regional differences in nutrient–chlorophyll relationships rather than true land use effects on chlorophyll a.


Author(s):  
Louis J. Pignataro ◽  
Joseph Wen ◽  
Robert Burchell ◽  
Michael L. Lahr ◽  
Ann Strauss-Wieder

The purpose of the Transportation Economic and Land Use System (TELUS) is to convert the transportation improvement program (TIP) into a management tool. Accordingly, the system provides detailed and easily accessible information on transportation projects in the region, as well as their interrelationships and impacts. By doing so, TELUS enables public-sector agencies to meet organizational, Intermodal Surface Transportation Efficiency Act, state, and other mandates more effectively. The objectives are accomplished by providing the computer-based capability to analyze, sort, combine, and track transportation projects in or under consideration for a TIP; assessing the interrelationships among significant transportation projects; estimating the regional economic and land use effects of transportation projects; and presenting project information in an easily understood format, including geographic information system formats.


2014 ◽  
Vol 41 ◽  
pp. 220-228 ◽  
Author(s):  
Yuchen Cui ◽  
Sabyasachee Mishra ◽  
Timothy F. Welch

2008 ◽  
Vol 106 (2) ◽  
pp. 170-177 ◽  
Author(s):  
Eunice Maia de Andrade ◽  
Helba Araújo Queiroz Palácio ◽  
Ivam Holanda Souza ◽  
Raimundo Alípio de Oliveira Leão ◽  
Maria João Guerreiro

2013 ◽  
Vol 58 (7) ◽  
pp. 1405-1415 ◽  
Author(s):  
Myra Juckers ◽  
Clayton J. Williams ◽  
Marguerite A. Xenopoulos

Sign in / Sign up

Export Citation Format

Share Document