Tree-ring evidence of the impacts of climate change and agricultural cultivation on vegetation coverage in the upper reaches of the Weihe River, northwest China

2020 ◽  
Vol 707 ◽  
pp. 136160
Author(s):  
Changfeng Sun ◽  
Yu Liu ◽  
Huiming Song ◽  
Qiang Li ◽  
Qiufang Cai ◽  
...  
2018 ◽  
Vol 154 ◽  
pp. 34-39 ◽  
Author(s):  
Leqi Fang ◽  
Shengli Tao ◽  
Jiangling Zhu ◽  
Yu Liu

2018 ◽  
Vol 38 (8) ◽  
pp. 3421-3431 ◽  
Author(s):  
Changfeng Sun ◽  
Yu Liu ◽  
Huiming Song ◽  
Ruochen Mei ◽  
Paramate Payomrat ◽  
...  

2018 ◽  
Vol 49 (6) ◽  
pp. 1740-1752 ◽  
Author(s):  
Peng Yang ◽  
Jun Xia ◽  
Chesheng Zhan ◽  
Xuejuan Chen ◽  
Yunfeng Qiao ◽  
...  

Abstract Separating the impacts of climate change and human activity on actual evapotranspiration (ET) is important for reducing comprehensive risk and improving the adaptability of water resource systems. In this study, the spatiotemporal distribution of actual ET in the Aksu River Basin, Northwest China, during the period 2000–2015 was evaluated using the Vegetation Interfaces Processes model and Moderate Resolution Imaging Spectroradiometer-Normalized Difference Vegetation Index. The impact of climate change and human activity on actual ET were separated and quantified. The results demonstrated that: (1) the annual pattern of actual ET per pixel exhibited the highest values for arable land (average 362.4 mm/a/pixel), followed by forest land and grassland (average of 159.6 and 142.8 mm/a/pixel, respectively). Significant increasing linear trends (p < 0.05) of 3.2 and 1.8 mm/a were detected in the arable land and forest land time series, respectively; (2) precipitation was the most significant of the selected climate factors (precipitation, average temperature, sunshine duration, and wind speed) for all ecosystems. The second most significant was wind speed; (3) human activity caused 89%, 98%, and 80% of the changes in actual ET of forest, grass, and arable land, respectively, while climate change caused 11%, 2%, and 20% of the changes in actual ET, in the Aksu River Basin during 2000–2015.


Forests ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1382
Author(s):  
Hanxue Liang ◽  
Shaowei Jiang ◽  
Ali Muhammad ◽  
Jian Kang ◽  
Huoxing Zhu ◽  
...  

As an important barrier against desert invasion in Northwest China, Helan Mountains (HL), Luoshan Mountains (LS) and their natural forests have an extremely important ecological status. It is of great significance to study the relationship between forest growth and climate in this region under the background of global change. At present, relevant research mostly focuses on the Chinese pine (Pinus tabulaeformis Carr.), and little is known about how Qinghai spruce (Picea crassifolia Kom.) responds to climate change. To investigate the potential relationships between radial growth of P. crassifolia and climatic conditions in Ningxia, China, we collected tree-ring samples from P. crassifolia growing in the HL and LS and then established the standard tree-ring width chronologies for the two sites. Correlation analysis together with multivariate linear regression and relative contribution analyses were used, and results showed that radial growth in the HL was determined by the precipitation in the previous September, by the standardized evapotranspiration index (SPEI) in the current March and June, and by the maximum air temperature in the current September. The maximum air temperature in the current September contributed the most (0.348) to the radial growth in the HL. In the LS, radial growth was determined by the precipitation in the previous September and in the current March and by the minimum air temperature in the current July. The factor that made the most contribution was the precipitation in the current March (0.489). Our results suggested that in the wetting and warming future, growth of P. crassifolia in the HL will increase while that in the LS needs further investigation. Our results also provide a basis for predicting how P. crassifolia in northwest China will grow under the background of future climate change and provide a reference for formulating relevant management measures to achieve ecological protection and sustainable development policies.


Author(s):  
Feifei Pan ◽  
Jianping Xie ◽  
Juming Lin ◽  
Tingwei Zhao ◽  
Yongyuan Ji ◽  
...  

Based on 541 Landsat images between 1988 and 2016, the normalized difference vegetation indices (NDVIs) of the wetland vegetation at Xitugou (XTG) and Wowachi (WWC) inside the Dunhuang Yangguan National Nature Reserve (YNNR) in northwest China were calculated for assessing impacts of climate change on wetland vegetation in the YNNR. It was found that the wetland vegetation at the XTG and WWC both had shown a significant increasing trend in the past 30 years, and the increase in both annual mean temperature and peak snow depth over the Altun Mountains led to the increase of wetland vegetation. The influence of local precipitation on the XTG wetland vegetation was greater than on the WWC wetland vegetation, which demonstrates that in extremely arid regions, the major constrain to the wetland vegetation is water availability in soils which is greatly related to the surface water detention and discharge of groundwater. At both XTG and WWC, snowmelt from the Altun Mountains is the main contributor to the groundwater discharge, while local precipitation plays a less role in influencing the wetland vegetation at the WWC than at the XTG, because the wetland vegetation grows on a relatively flat terrain at the WWC, while in a stream channel at the XTG.


Sign in / Sign up

Export Citation Format

Share Document