Nitrogen and phosphorus removal performance and bacterial communities in a multi-stage surface flow constructed wetland treating rural domestic sewage

2020 ◽  
Vol 709 ◽  
pp. 136235 ◽  
Author(s):  
Xi Li ◽  
Yuyuan Li ◽  
Dianqing Lv ◽  
Yong Li ◽  
Jinshui Wu
2020 ◽  
Vol 81 (9) ◽  
pp. 2023-2032
Author(s):  
Jingqing Gao ◽  
Lei Yang ◽  
Rui Zhong ◽  
Yong Chen ◽  
Jingshen Zhang ◽  
...  

Abstract The environmental problems related to rural domestic sewage treatment are becoming increasingly serious, and society is also concerned about them. A baffled vertical flow constructed wetland (BVFCW) is a good choice for cleaning wastewater. Herein, a drinking-water treatment sludge-BVFCW (D-BVFCW) parallel with ceramsite-BVFCW (C-BVFCW) planted with Oenanthe javanica (O. javanica) to treat rural domestic sewage was investigated, aiming to compare nitrogen and phosphorus removal efficiency in different BVFCWs. A removal of 23.9% NH4+-N, 24.6% total nitrogen (TN) and 76.7% total phosphorus (TP) occurred simultaneously in the D-BVFCW; 56.4% NH4+-N, 60.8% TN and 55.2% TP respectively in the C-BVFCW. The root and plant height increased by an average of 7.9 cm and 8.3 cm, respectively, in the D-BVFCW, and by 0.7 cm and 1.1 cm, respectively, in the C-BVFCW. These results demonstrate that the D-BVFCW and C-BVFCW have different effects on the removal of N and P. The D-BVFCW mainly removed P, while C-BVFCW mainly removed N.


2010 ◽  
Vol 62 (8) ◽  
pp. 1745-1754 ◽  
Author(s):  
X. Chen ◽  
T. Fujiwara ◽  
K. Ohtoshi ◽  
S. Inamori ◽  
K. Nakamachi ◽  
...  

A novel oxidation ditch system using anaerobic tanks and innovative dual dissolved oxygen (DO) control technology is proposed for biological nitrogen and phosphorus removal from domestic sewage. A continuous bench-scale experiment running for more than 300 days was performed to evaluate the system. Monitoring and controlling the airflow and recirculation flow rate independently using DO values at two points along the ditch permitted maintenance of aerobic and anoxic zone ratios of around 0.30 and 0.50, respectively. The ability to optimize aerobic and anoxic zone ratios using the dual DO control technology meant that a total nitrogen removal efficiency of 83.2–92.9% could be maintained. This remarkable nitrogen removal performance minimized the nitrate recycle to anaerobic tanks inhibiting the phosphorus release. Hence, the total phosphorus removal efficiency was also improved and ranged within 72.6–88.0%. These results demonstrated that stabilization of the aerobic and anoxic zone ratio by dual DO control technology not only resulted in a marked improvement of nitrogen removal, but it also enhanced phosphorus removal.


2020 ◽  
Vol 190 ◽  
pp. 71-79
Author(s):  
Rodrigo de Freitas Bueno ◽  
Thiago Andrade ◽  
Júlia Kersul Faria ◽  
Vitor Silva Liduino

Sign in / Sign up

Export Citation Format

Share Document