Modeling ESV losses caused by urban expansion using cellular automata and geographically weighted regression

2020 ◽  
Vol 712 ◽  
pp. 136509 ◽  
Author(s):  
Shurui Chen ◽  
Yongjiu Feng ◽  
Xiaohua Tong ◽  
Song Liu ◽  
Huan Xie ◽  
...  
Author(s):  
Ming Li ◽  
Guojun Zhang ◽  
Ying Liu ◽  
Yongwang Cao ◽  
Chunshan Zhou

China is the world’s largest developing country and its regions vary considerably. However, spatial heterogeneity in determinants of urban expansion in prefecture-level cities have not been identified. The present study explored the spatiotemporal characteristics of Chinese urban expansion and adopted a geographically weighted regression (GWR) method to determine this spatial heterogeneity. The results indicated that China experienced massive urban expansion during 1990–2015, with urban areas growing from 4.88 × 104 km2 to 1.06 × 105 km2, 46.42% of which was distributed in the eastern region. The results of the GWR model revealed the spatial heterogeneity in the determinants of urban expansion. Marketization was vital for urban expansion and had a stronger impact in the developed eastern and southern regions than in the less-developed northern and western regions. Globalization and decentralization bi-directionally affected urban expansion. The constraining effects of physical factors were limited and stronger in the developing northern region than in the developed southern region. Identifying the varying determinants of urban expansion is essential for policy-making in various regions.


Land ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 633
Author(s):  
Yabo Zhao ◽  
Dixiang Xie ◽  
Xiwen Zhang ◽  
Shifa Ma

Urban agglomeration is an important spatial organization mode in China’s attempts to attain an advanced (mature) stage of urbanization, and to understand its consequences, accurate simulation scenarios are needed. Compared to traditional urban growth simulations, which operate on the scale of a single city, urban agglomeration considers interactions among multiple cities. In this study, we combined a spatial Markov chain (SMC) (a quantitative composition module) with geographically weighted regression-based cellular automata (GWRCA) (a spatial allocation module) to predict urban growth in the Guangdong–Hong Kong–Macao Greater Bay Area (GBA), an internationally important urban agglomeration in southern China. The SMC method improves on the traditional Markov chain technique by taking into account the interaction and influence between each city to predict growth quantitatively, whereas the geographically weighted regression (GWR) gives an empirical estimate of urban growth suitability based on geospatial differentiation on the scale of an urban agglomeration. Using the SMC model to forecast growth in the GBA in the year 2050, our results indicated that the rate of smaller cities will increase, while that of larger cities will slow down. The coastal belt in the core areas of the GBA as well as the region’s peripheral cities are most likely to be areas of development by 2050, while established cities such as Shenzhen and Dongguan will no longer experience rapid expansion. Compared with traditional simulation models, the SMC-GWRCA was able to consider spatiotemporal interactions among cities when forecasting changes to a large region like the GBA. This study put forward a development scenario for the GBA for 2050 on the scale of an urban agglomeration to provide a more credible scenario for spatial planning. It also provided evidence in support of using integrated SMC-GWRCA models, which, we maintain, offer a more efficient approach for simulating urban agglomeration development than do traditional methods.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Seblewongel Tigabu ◽  
Alemneh Mekuriaw Liyew ◽  
Bisrat Misganaw Geremew

Abstract Background In developing countries, 20,000 under 18 children give birth every day. In Ethiopia, teenage pregnancy is high with Afar and Somalia regions having the largest share. Even though teenage pregnancy has bad maternal and child health consequences, to date there is limited evidence on its spatial distribution and driving factors. Therefore, this study is aimed to assess the spatial distribution and spatial determinates of teenage pregnancy in Ethiopia. Methods A secondary data analysis was conducted using 2016 EDHS data. A total weighted sample of 3381 teenagers was included. The spatial clustering of teenage pregnancy was priorly explored by using hotspot analysis and spatial scanning statistics to indicate geographical risk areas of teenage pregnancy. Besides spatial modeling was conducted by applying Ordinary least squares regression and geographically weighted regression to determine factors explaining the geographic variation of teenage pregnancy. Result Based on the findings of exploratory analysis the high-risk areas of teenage pregnancy were observed in the Somali, Afar, Oromia, and Hareri regions. Women with primary education, being in the household with a poorer wealth quintile using none of the contraceptive methods and using traditional contraceptive methods were significant spatial determinates of the spatial variation of teenage pregnancy in Ethiopia. Conclusion geographic areas where a high proportion of women didn’t use any type of contraceptive methods, use traditional contraceptive methods, and from households with poor wealth quintile had increased risk of teenage pregnancy. Whereas, those areas with a higher proportion of women with secondary education had a decreased risk of teenage pregnancy. The detailed maps of hotspots of teenage pregnancy and its predictors had supreme importance to policymakers for the design and implementation of adolescent targeted programs.


Author(s):  
Jin-Wei Yan ◽  
Fei Tao ◽  
Shuai-Qian Zhang ◽  
Shuang Lin ◽  
Tong Zhou

As part of one of the five major national development strategies, the Yangtze River Economic Belt (YREB), including the three national-level urban agglomerations (the Cheng-Yu urban agglomeration (CY-UA), the Yangtze River Middle-Reach urban agglomeration (YRMR-UA), and the Yangtze River Delta urban agglomeration (YRD-UA)), plays an important role in China’s urban development and economic construction. However, the rapid economic growth of the past decades has caused frequent regional air pollution incidents, as indicated by high levels of fine particulate matter (PM2.5). Therefore, a driving force factor analysis based on the PM2.5 of the whole area would provide more information. This paper focuses on the three urban agglomerations in the YREB and uses exploratory data analysis and geostatistics methods to describe the spatiotemporal distribution patterns of air quality based on long-term PM2.5 series data from 2015 to 2018. First, the main driving factor of the spatial stratified heterogeneity of PM2.5 was determined through the Geodetector model, and then the influence mechanism of the factors with strong explanatory power was extrapolated using the Multiscale Geographically Weighted Regression (MGWR) models. The results showed that the number of enterprises, social public vehicles, total precipitation, wind speed, and green coverage in the built-up area had the most significant impacts on the distribution of PM2.5. The regression by MGWR was found to be more efficient than that by traditional Geographically Weighted Regression (GWR), further showing that the main factors varied significantly among the three urban agglomerations in affecting the special and temporal features.


2021 ◽  
Vol 179 ◽  
pp. 399-406
Author(s):  
Syarifah Diana Permai ◽  
Ardelia Christina ◽  
Alexander Agung Santoso Gunawan

2021 ◽  
Author(s):  
M. Fariz Fadillah Mardianto ◽  
Sediono ◽  
Novia Anggita Aprilianti ◽  
Belindha Ayu Ardhani ◽  
Rizka Firdaus Rahmadina ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document