Spatial differences of ecosystem services and their driving factors: A comparation analysis among three urban agglomerations in China's Yangtze River Economic Belt

2020 ◽  
Vol 725 ◽  
pp. 138452 ◽  
Author(s):  
Qiaoling Luo ◽  
Junfang Zhou ◽  
Zhigang Li ◽  
Bolin Yu
Author(s):  
Wenbo Cai ◽  
Wei Jiang ◽  
Hongyu Du ◽  
Ruishan Chen ◽  
Yongli Cai

With the global increase in population and urban expansion, the simultaneous rise of social demand and degradation of ecosystems is omnipresent, especially in the urban agglomerations of China. In order to manage environmental problems and match ecosystem supply and social demand, these urban agglomerations promoted regional socio-ecological integration but ignored differential city management during the process of integration. Therefore, it is necessary to design a general framework linking ecosystem supply and social demand to differential city management. In addition, in previous studies, ecosystem services supply–demand amount (mis)match assessment was emphasized, but ecosystem services supply–demand type (mis)match assessment was ignored, which may lead to biased decisions. To deal with these problems, this study presented a general ecosystem services framework with six core steps for differential city management and developed a double-indices (amount and type) method to identify ecosystem services supply–demand (mis)matches in an urban agglomeration. This framework and the double-indices method were applied in the case study of the Yangtze River Delta Urban Agglomeration. Ecosystem supply–demand amount and type (mis)match levels and spatial pattern of twenty-six cities were identified. Twenty-six cities in the YRDUA were classified into five kinds of cities with different levels of ES supply–demand (mis)matches for RS, three kinds of cities for PS, and four kinds of cities for CS. Differential city management strategies were designed. Despite its limitations, this study can be a reference to giving insights into ES supply–demand (mis)match assessment and management.


Author(s):  
Wanxu Chen ◽  
Guangqing Chi ◽  
Jiangfeng Li

The impact of human activities on ecosystems can be measured by ecosystem services. The study of ecosystem services is an essential part of coupled human and natural systems. However, there is limited understanding about the driving forces of ecosystem services, especially from a spatial perspective. This study attempts to fill the gap by examining the driving forces of ecosystem services with an integrated spatial approach. The results indicate that more than US$430 billion of ecosystem services value (ESV) is produced annually in the Middle Reaches of the Yangtze River Urban Agglomerations (MRYRUA), with forestland providing the largest proportion of total ESV (≥75%) and hydrological regulation function accounting for the largest proportion of total ESV (≥15%). The average ESV in the surrounding areas is obviously higher than those in the metropolitan areas, in the plains areas, and along major traffic routes. Spatial dependence and spatial spillover effects were observed in the ecosystem services in the MRYRUA. Spatial regression results indicate that road density, proportion of developed land, and river density are negatively associated with ecosystem services, while distance to a socioeconomic center, proportion of forestland land, elevation, and precipitation are positively associated with ecosystem services. The findings in this study suggest that these driving factors and the spillover effect should be taken into consideration in ecosystem protection and land-use policymaking in urban agglomerations.


2019 ◽  
Vol 11 (23) ◽  
pp. 6623 ◽  
Author(s):  
Peng ◽  
Huang ◽  
Elahi ◽  
Wei

The vulnerability of ecological environment threatens social and economic development. Recent studies failed to reveal the driving mechanism behind it, and there is little analysis on the spatial clustering characteristics of the vulnerability of urban agglomerations. Therefore, this article estimates ecological environment vulnerability in 2005, 2011, and 2017, determines Moran Index (MI) with spatial autocorrelation model, analyzes the spatial-temporal difference characteristics of ecological environment vulnerability of Yangtze River Urban Agglomeration and the spatial aggregation effect, and discusses its driving factors. The study results estimate that the overall vulnerability index of the Yangtze River Urban Agglomeration is in a mild fragile state. However, most fragile and slightly fragile cities are developing in the direction of moderate to severe vulnerability. The spatial agglomeration effect of the ecological environment vulnerability of the Yangtze River Urban Agglomeration is not obvious, and the effect of mutual ecological environment influence among cities is not obvious. Moreover, the driving factors of ecological environment vulnerability of Yangtze River city group changed from natural factors to social economic factors and then to policy factors. It is necessary to develop an ecological economy, coordinate the spatial agglomeration of urban agglomerations, and make balance the internal differences of urban agglomerations.


Author(s):  
Luwen Liu ◽  
Xingrong Chen ◽  
Wanxu Chen ◽  
Xinyue Ye

Clarifying the impact mechanisms of landscape patterns on ecosystem services is highly important for effective ecosystem protection, policymaking, and landscape planning. However, previous literature lacks knowledge about the impact mechanisms of landscape patterns on ecosystem services from a spatial perspective. Thus, this study measured landscape patterns and the ecosystem services value (ESV) using a series of landscape pattern metrics and an improved benefit transfer method based on land-use data from 2015. It explores the impact mechanisms of the landscape pattern metrics on the ESV using the ordinary least-squares method and spatial regression models in the middle reaches of the Yangtze River Urban Agglomerations (MRYRUA), China. We found that forestland was the main landscape type in the MRYRUA, followed by cultivated land, and the fragmentation degree of cultivated land was significantly higher than that of forestland. The findings demonstrate that landscape pattern metrics had a significant impact on ecosystem services, but could vary greatly. Moreover, ecosystem services in the MRYRUA exhibited significant spatial spillover effects and cross-regional collaborative governance was an effective means of landscape planning. This paper acts as a scientific reference and effective guidance for landscape planning and regional ecosystem conservation in MRYRUA and other similarly fast-growing urban agglomerations.


Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 400
Author(s):  
Liejia Huang ◽  
Peng Yang ◽  
Boqing Zhang ◽  
Weiyan Hu

The purpose of this paper is to probe into the coupled coordination of urbanization in population, land, and industry to improve urbanization quality. A coupled coordination degree model, spatial analysis method and spatial metering model are employed. The study area is 110 prefecture-level cities in the Yangtze River Economic Belt. The study shows that: (1) the coupling degree of the population-land-industry urbanization grew very slowly between 2006 and 2016. On the whole, the three-dimensional urbanization is in a running-in period, and land-based urbanization dominates, while population-based urbanization and industry-based urbanization are relatively lagging behind. (2) The three major urban agglomerations, the Chengdu-Chongqing, the middle reaches of the Yangtze River and the Yangtze River Delta, are parallel to the whole area in terms of the coupling degree of the three dimensional urbanization with a well-ordered structure, especially in the central cities of the three major urban agglomerations. (3) There is significant spatial correlation in the coupling degree and coordination degree of the three-dimensional urbanization. The high value of coupling degree and coordination degree are clustered continuously in developed cities, provincial capitals, and central cities of the downstream reaches of the Yangtze River. (4) The coordinated degree has significant positive spatial autocorrelation, showing obvious spatial agglomeration characteristics: H-H agglomeration areas are concentrated in the downstream developed areas such as Jiangsu, Zhejiang, and Shanghai. L-L agglomeration areas are mainly concentrated in upstream undeveloped areas, but the number of their cities shows a decreasing trend. (5) The coordination degree of the three-dimensional urbanization is the result of the comprehensive effect of economic development level, the government’s decision-making behavior, and urban location. Among them, the economic development level, urbanization investment, traffic condition, and urban geographical location play a decisive role. This paper contributes to the existing literatures by exploring urbanization quality, spatial correlation and influencing factors from the perspectives of the three-dimensional urbanization in the Yangtze River Economic Belt. The conclusion might be helpful to promote the coupling and coordinated development of urbanization in population-land-industry, and ultimately to improve urbanization quality in the Yangtze River Economic Belt.


Author(s):  
Jin-Wei Yan ◽  
Fei Tao ◽  
Shuai-Qian Zhang ◽  
Shuang Lin ◽  
Tong Zhou

As part of one of the five major national development strategies, the Yangtze River Economic Belt (YREB), including the three national-level urban agglomerations (the Cheng-Yu urban agglomeration (CY-UA), the Yangtze River Middle-Reach urban agglomeration (YRMR-UA), and the Yangtze River Delta urban agglomeration (YRD-UA)), plays an important role in China’s urban development and economic construction. However, the rapid economic growth of the past decades has caused frequent regional air pollution incidents, as indicated by high levels of fine particulate matter (PM2.5). Therefore, a driving force factor analysis based on the PM2.5 of the whole area would provide more information. This paper focuses on the three urban agglomerations in the YREB and uses exploratory data analysis and geostatistics methods to describe the spatiotemporal distribution patterns of air quality based on long-term PM2.5 series data from 2015 to 2018. First, the main driving factor of the spatial stratified heterogeneity of PM2.5 was determined through the Geodetector model, and then the influence mechanism of the factors with strong explanatory power was extrapolated using the Multiscale Geographically Weighted Regression (MGWR) models. The results showed that the number of enterprises, social public vehicles, total precipitation, wind speed, and green coverage in the built-up area had the most significant impacts on the distribution of PM2.5. The regression by MGWR was found to be more efficient than that by traditional Geographically Weighted Regression (GWR), further showing that the main factors varied significantly among the three urban agglomerations in affecting the special and temporal features.


Sign in / Sign up

Export Citation Format

Share Document