scholarly journals Impacts of changing society and climate on nutrient loading to the Baltic Sea

2020 ◽  
Vol 731 ◽  
pp. 138935 ◽  
Author(s):  
Sampo Pihlainen ◽  
Marianne Zandersen ◽  
Kari Hyytiäinen ◽  
Hans Estrup Andersen ◽  
Alena Bartosova ◽  
...  
AMBIO ◽  
2020 ◽  
Vol 50 (1) ◽  
pp. 203-214 ◽  
Author(s):  
Malin Olofsson ◽  
Isabell Klawonn ◽  
Bengt Karlson

AbstractDense blooms of diazotrophic filamentous cyanobacteria are formed every summer in the Baltic Sea. We estimated their contribution to nitrogen fixation by combining two decades of cyanobacterial biovolume monitoring data with recently measured genera-specific nitrogen fixation rates. In the Bothnian Sea, estimated nitrogen fixation rates were 80 kt N year−1, which has doubled during recent decades and now exceeds external loading from rivers and atmospheric deposition of 69 kt year−1. The estimated contribution to the Baltic Proper was 399 kt N year−1, which agrees well with previous estimates using other approaches and is greater than the external input of 374 kt N year−1. Our approach can potentially be applied to continuously estimate nitrogen loads via nitrogen fixation. Those estimates are crucial for ecosystem adaptive management since internal nitrogen loading may counteract the positive effects of decreased external nutrient loading.


2015 ◽  
Vol 529 ◽  
pp. 168-181 ◽  
Author(s):  
Inese Huttunen ◽  
Heikki Lehtonen ◽  
Markus Huttunen ◽  
Vanamo Piirainen ◽  
Marie Korppoo ◽  
...  

2018 ◽  
Vol 15 (13) ◽  
pp. 3975-4001 ◽  
Author(s):  
Sami A. Jokinen ◽  
Joonas J. Virtasalo ◽  
Tom Jilbert ◽  
Jérôme Kaiser ◽  
Olaf Dellwig ◽  
...  

Abstract. The anthropogenically forced expansion of coastal hypoxia is a major environmental problem affecting coastal ecosystems and biogeochemical cycles throughout the world. The Baltic Sea is a semi-enclosed shelf sea whose central deep basins have been highly prone to deoxygenation during its Holocene history, as shown previously by numerous paleoenvironmental studies. However, long-term data on past fluctuations in the intensity of hypoxia in the coastal zone of the Baltic Sea are largely lacking, despite the significant role of these areas in retaining nutrients derived from the catchment. Here we present a 1500-year multiproxy record of near-bottom water redox changes from the coastal zone of the northern Baltic Sea, encompassing the climatic phases of the Medieval Climate Anomaly (MCA), the Little Ice Age (LIA), and the Modern Warm Period (MoWP). Our reconstruction shows that although multicentennial climate variability has modulated the depositional conditions and delivery of organic matter (OM) to the basin the modern aggravation of coastal hypoxia is unprecedented and, in addition to gradual changes in the basin configuration, it must have been forced by excess human-induced nutrient loading. Alongside the anthropogenic nutrient input, the progressive deoxygenation since the beginning of the 1900s was fueled by the combined effects of gradual shoaling of the basin and warming climate, which amplified sediment focusing and increased the vulnerability to hypoxia. Importantly, the eutrophication of coastal waters in our study area began decades earlier than previously thought, leading to a marked aggravation of hypoxia in the 1950s. We find no evidence of similar anthropogenic forcing during the MCA. These results have implications for the assessment of reference conditions for coastal water quality. Furthermore, this study highlights the need for combined use of sedimentological, ichnological, and geochemical proxies in order to robustly reconstruct subtle redox shifts especially in dynamic, non-euxinic coastal settings with strong seasonal contrasts in the bottom water quality.


AMBIO ◽  
2019 ◽  
Vol 48 (11) ◽  
pp. 1377-1388 ◽  
Author(s):  
Markku Ollikainen ◽  
Berit Hasler ◽  
Katarina Elofsson ◽  
Antti Iho ◽  
Hans E. Andersen ◽  
...  

Abstract This paper analyzes the main weaknesses and key avenues for improvement of nutrient policies in the Baltic Sea region. HELCOM’s Baltic Sea Action Plan (BSAP), accepted by the Baltic Sea countries in 2007, was based on an innovative ecological modeling of the Baltic Sea environment and addressed the impact of the combination of riverine loading and transfer of nutrients on the ecological status of the sea and its sub-basins. We argue, however, that the assigned country-specific targets of nutrient loading do not reach the same level of sophistication, because they are not based on careful economic and policy analysis. We show an increasing gap between the state-of-the-art policy alternatives and the existing command-and-control-based approaches to the protection of the Baltic Sea environment and outline the most important steps for a Baltic Sea Socioeconomic Action Plan. It is time to raise the socioeconomic design of nutrient policies to the same level of sophistication as the ecological foundations of the BSAP.


2018 ◽  
Author(s):  
Sami A. Jokinen ◽  
Joonas J. Virtasalo ◽  
Tom Jilbert ◽  
Jérôme Kaiser ◽  
Olaf Dellwig ◽  
...  

Abstract. The anthropogenically forced expansion of coastal hypoxia is a major environmental problem affecting coastal ecosystems and biogeochemical cycles throughout the world. The Baltic Sea is a semi-enclosed shelf sea whose central deep basins have been highly prone to deoxygenation during its Holocene history, as shown previously by numerous paleoenvironmental studies. However, long-term data on past fluctuations in the intensity of hypoxia in the coastal zone of the Baltic Sea are largely lacking, despite the significant role of these areas in retaining nutrients derived from the catchment. Here we present a 1500-year multiproxy record of near-bottom water redox changes from the coastal zone of the northern Baltic Sea, encompassing the climatic phases of the Medieval Climate Anomaly (MCA), the Little Ice Age (LIA), and the Modern Warm Period (MoWP). Our reconstruction shows that although multicentennial climate variability has modulated depositional conditions and delivery of organic matter (OM) to the basin the modern aggravation of coastal hypoxia is unprecedented, and besides gradual changes in the basin configuration, it must have been forced by excess human-induced nutrient loading. The progressive deoxygenation since the beginning of 1900s was originally triggered by the combined effects of gradual shoaling of the basin and warming climate, which amplified sediment focusing and increased the vulnerability to hypoxia. Importantly, the anthropogenic eutrophication of coastal waters in our study area began decades earlier than previously thought, leading to a marked aggravation of hypoxia in the 1950s through fueling primary productivity, while we find no evidence of anthropogenic forcing during the MCA. These results have implications for the assessment of reference conditions for coastal water quality. Furthermore, this study highlights the need for combined use of sedimentological, ichnological, and geochemical proxies in order to robustly reconstruct subtle redox shifts especially in dynamic, non-euxinic coastal settings with strong seasonal contrasts in the bottom water quality.


Boreas ◽  
2002 ◽  
Vol 31 (1) ◽  
pp. 65-74 ◽  
Author(s):  
Christian Christiansen ◽  
Helmar Kunzendorf ◽  
Kay-Christian Emeis ◽  
Rudolf Endler ◽  
Ulrich Struck ◽  
...  

2003 ◽  
pp. 136-146
Author(s):  
K. Liuhto

Statistical data on reserves, production and exports of Russian oil are provided in the article. The author pays special attention to the expansion of opportunities of sea oil transportation by construction of new oil terminals in the North-West of the country and first of all the largest terminal in Murmansk. In his opinion, one of the main problems in this sphere is prevention of ecological accidents in the process of oil transportation through the Baltic sea ports.


Author(s):  
Angelina E. Shatalova ◽  
Uriy A. Kublitsky ◽  
Dmitry A. Subetto ◽  
Anna V. Ludikova ◽  
Alar Rosentau ◽  
...  

The study of paleogeography of lakes is an actual and important direction in modern science. As part of the study of lakes in the North-West of the Karelian Isthmus, this analysis will establish the dynamics of salinity of objects, which will allow to reconstruct changes in the level of the Baltic Sea in the Holocene.


Author(s):  
Małgorzata Leśniewska ◽  
Małgorzata Witak

Holocene diatom biostratigraphy of the SW Gulf of Gdańsk, Southern Baltic Sea (part III)The palaeoenvironmental changes of the south-western part of the Gulf of Gdańsk during the last 8,000 years, with reference to the stages of the Baltic Sea, were reconstructed. Diatom analyses of two cores taken from the shallower and deeper parts of the basin enabled the conclusion to be drawn that the microflora studied developed in the three Baltic phases: Mastogloia, Littorina and Post-Littorina. Moreover, the so-called anthropogenic assemblage was observed in subbottom sediments of the study area.


Sign in / Sign up

Export Citation Format

Share Document