scholarly journals Nutrient removal potential and biomass production by Phragmites australis and Typha latifolia on European rewetted peat and mineral soils

2020 ◽  
Vol 747 ◽  
pp. 141102 ◽  
Author(s):  
Jeroen J.M. Geurts ◽  
Claudia Oehmke ◽  
Carla Lambertini ◽  
Franziska Eller ◽  
Brian K. Sorrell ◽  
...  
1986 ◽  
Vol 64 (9) ◽  
pp. 2120-2124 ◽  
Author(s):  
A. A. Crowder ◽  
S. M. Macfie

In three wetlands in southeastern Ontario, ferric hydroxide was deposited on the roots of Typha latifolia (maximum, 67 × 103 ppm); in four other wetlands, deposition was negligible (< 103 ppm). Iron deposition was seasonal, with the peak period in July–August corresponding to peak biomass production of shoots. In one wetland where Carex rostrata and Phragmites australis occurred, seasonal plaque formation was similar. Plaque formation was not obviously related to Eh and pH regimes.


Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1654 ◽  
Author(s):  
Marcin Dębowski ◽  
Paulina Rusanowska ◽  
Marcin Zieliński ◽  
Magda Dudek ◽  
Zdzisława Romanowska-Duda

2014 ◽  
Vol 70 (7) ◽  
pp. 1195-1204 ◽  
Author(s):  
Yonggui Zhao ◽  
Yang Fang ◽  
Yanling Jin ◽  
Jun Huang ◽  
Shu Bao ◽  
...  

The effects of water depth, coverage rate and harvest regime on nutrient removal from wastewater and high-protein biomass production were assessed in a duckweed-based (Lemna aequinoctialis) pilot-scale wastewater treatment system (10 basins × 12 m2) that is located near Dianchi Lake in China. The results indicated that a water depth of 50 cm, a coverage rate of 150% and a harvest regime of 4 days were preferable conditions, under which excellent records of high-protein duckweed (dry matter production of 6.65 g/m2/d with crude protein content of 36.16% and phosphorus content of 1.46%) were obtained at a temperature of 12–21 °C. At the same time, the system achieved a removal efficiency of 66.16, 23.1, 48.3 and 76.52% for NH4+-N, TN, TP and turbidity, respectively, with the considerable removal rate of 0.465 g/m2/d for TN and 0.134 g/m2/d for TP at a hydraulic retention time of 6 days. In additionally, it was found that a lower duckweed density could lead to higher dissolved oxygen in the water and then a higher removal percentage of NH4+-N by nitrobacteria. This study obtains the preferable operation conditions for wastewater treatment and high-protein biomass production in a duckweed-based pilot-scale system, supplying an important reference for further large-scale applications of duckweed.


Sign in / Sign up

Export Citation Format

Share Document