Harvesting Porphyridium purpureum using polyacrylamide polymers and alkaline bases and their impact on biomass quality

2021 ◽  
Vol 755 ◽  
pp. 142412
Author(s):  
Hang P. Vu ◽  
Luong N. Nguyen ◽  
Minh T. Vu ◽  
Leen Labeeuw ◽  
Benjamin Emmerton ◽  
...  
2013 ◽  
Vol 4 (1) ◽  
Author(s):  
Debashish Bhattacharya ◽  
Dana C. Price ◽  
Cheong Xin Chan ◽  
Huan Qiu ◽  
Nicholas Rose ◽  
...  

1980 ◽  
Vol 16 (3) ◽  
pp. 444-448 ◽  
Author(s):  
Sylvia A. Hill ◽  
Leslie R. Towill ◽  
Milton R. Sommerfeld

2021 ◽  
Vol 59 ◽  
pp. 102439
Author(s):  
Andreia S. Ferreira ◽  
Inês Mendonça ◽  
Inês Póvoa ◽  
Hélia Carvalho ◽  
Alexandra Correia ◽  
...  

PLoS ONE ◽  
2018 ◽  
Vol 13 (11) ◽  
pp. e0205880 ◽  
Author(s):  
Francisco J. Ostos Garrido ◽  
Fernando Pistón ◽  
Leonardo D. Gómez ◽  
Simon J. McQueen-Mason

2020 ◽  
Vol 5 (1) ◽  
pp. 12-19
Author(s):  
R. G. Gevorgiz ◽  
S. N. Zheleznova

The carbon utilization efficiency is an important characteristic of the cultivated object. Diatom Cylindrotheca closterium (Ehrenberg) Reimann & J. C. Lewin is known to use carbon from aquatic environment quite effectively, as it has many unique carbonic anhydrases and carbon transporters. However, the carbon fixation efficiency for many types of diatoms in culture is still unknown. When calculating the carbon fixation efficiency, researchers use different terminology and methods, and it leads to significant difficulties when comparing the carbon fixation efficiency in the biomass of various types of microalgae. The aims of this study are: 1) to update terms and definitions used in literature on the basis of modern concepts of carbon fixation in microalgae biomass, as well as absorption of inorganic carbon by microalgae culture; 2) to evaluate the carbon fixation efficiency in the biomass of C. closterium diatom under conditions of cumulative cultivation. C. closterium was grown at a temperature of +20 °C on a nutrient medium RS. During the cultivation, the culture was bubbled with air (1.1 L of air per 1 L of culture per minute). The air temperature at the outlet of the suspension was of +19 °C; the maximum productivity of the culture was of 1.254 g·L−1·day−1. According to the results of the CHN analysis, the proportion of carbon in C. closterium dry biomass was of 23 %. Under the conditions of cumulative cultivation in C. closterium, the carbon fixation efficiency in biomass was of 90 %. Compared with other algae species, C. closterium is characterized by a rather high CO2 fixation efficiency. For example, in green microalga Chlorella protothecoides and Ch. vulgaris, the CO2 fixation efficiency was of 20 % and 55.3 %, respectively; in cyanobacteria Spirulina sp. – of 38 %; in red microalgae Porphyridium purpureum – of 69 %. It was observed that to ensure an increase of 1 g of C. closterium dry biomass per day at a temperature of +19 °C, a minimum of 0.46 L of CO2, or 1132 L of air, should be consumed. Possibly, it is high carbon fixation efficiency, as well as low carbon fraction in C. closterium biomass, that explains the high production indices of this species. Under equal conditions of cultivation in terms of light and carbon availability, the productivity of C. closterium can exceed the productivity of other types of microalgae by 5–10 times. So, while Spirulina sp. productivity reaches 0.2 g·L−1·day−1, C. closterium productivity is of 1.254 g·L−1·day−1.


Author(s):  
A.H.M. Kamal ◽  
Md. Mahbubur Rahman ◽  
Md. Mohaiminul Haque ◽  
Salman Sadiq ◽  
Aminul Hoque

2020 ◽  
Vol 10 (23) ◽  
pp. 8315
Author(s):  
Joran Verspreet ◽  
Lise Soetemans ◽  
Leen Bastiaens

It is often impossible in practice to process micro-algae immediately after their cultivation and harvest. This study, therefore, aimed to identify appropriate storage conditions for the wet preservation of Porphyridium purpureum. Algae were stored either as a concentrate or as a dilute culture at 4 °C, 8 °C, or 20 °C for 14 days and their quality was monitored. Concentrate storage tended to result in higher microbial numbers than dilute culture storage and clearly led to higher concentrations of malodorous organic acids. Butyric and isovaleric acid concentrations were about two orders of magnitude larger than their odor threshold values after 14 days of concentrate storage at 20 °C. Average B-phycoeryhrin (B-PE) levels were slightly higher after concentrate storage (2.5 ± 0.2 g B-PE/100 g organic matter) than after dilute culture storage (2.2 ± 0.5 g B-PE/100 g organic matter), probably due to respiration losses of other organic compounds in the first case. Significant amounts of organic matter got lost during concentrate storage (4–35%) as a result of carbohydrate degradation. The main restriction of concentrate storage was the rapid viscosity increase and formation of a weak gel structure complicating the later processing of the concentrates. These findings are highly relevant for P. purpureum cultivators and processors who have to store Porphyridium suspensions, even on a term of one day or less.


Sign in / Sign up

Export Citation Format

Share Document