Forest management practices of Pinus tabulaeformis plantations alter soil organic carbon stability by adjusting microbial characteristics on the Loess Plateau of China

2021 ◽  
Vol 766 ◽  
pp. 144209
Author(s):  
Yahui Song ◽  
Jiaying Zhai ◽  
Jiaoyang Zhang ◽  
Leilei Qiao ◽  
Guoliang Wang ◽  
...  
2018 ◽  
Vol 48 (10) ◽  
Author(s):  
Suellen Gomes Monteiro Batista ◽  
Patrícia Anjos Bittencourt Barreto-Garcia ◽  
Alessandro de Paula ◽  
Divino Levi Miguel ◽  
Willyan Charles Amaral Batista

ABSTRACT: One of the main alternatives for the rational exploitation of the Caatinga biome’s natural resources is sustainable forest management. Soil organic carbon (SOC) and its fractions can be used to evaluate the conservation status of forest ecosystems after anthropic interventions. Therefore, the objective of this study was to evaluate the short-term effect of different forest management practices on the distribution of SOC fractions in the Caatinga area located in Contendas do Sincorá National Forest (BA). Three forest management practices (clear cutting, selective cutting by diameter and selective cutting by species) were evaluated, using the unmanaged Caatinga as a control. Soil samples were collected at the 0-10cm depth. The SOC was fractionated into four fractions (F1’, F1, F2 and F3), adopting the chemical wet oxidation method based on increasing degrees of oxidation. The forest management caused a short-term change in the oxidizable fraction distribution of the SOC, which was reflected by a reduction of the most labile fractions.


CERNE ◽  
2013 ◽  
Vol 19 (3) ◽  
pp. 509-515 ◽  
Author(s):  
Luciano Farinha Watzlawick ◽  
Marcos Vinicius Winckler Caldeira ◽  
Tiago de Oliveira Godinho ◽  
Rafaelo Balbinot ◽  
Jonathan William Trautenmüller

This study aimed to estimate biomass and organic carbon in stands of Pinus taeda L. at different ages (14, 16, 19, 21, 22, 23 and 32 years) and located in the municipality of General Carneiro (PR). In order to estimate biomass and organic carbon in different tree components (needles, live branches, dead branches, bark and stem wood), the destructive quantification method was used in which seven trees from each age category were randomly sampled across the stand. Stocks of biomass and organic carbon were found to vary between the different age categories, mainly as a result of existing dissimilarities between ages in association with forest management practices such as thinning, pruning and tree density per hectare.


2013 ◽  
Vol 10 (7) ◽  
pp. 11181-11211 ◽  
Author(s):  
N. Lu ◽  
J. Liski ◽  
R. Y. Chang ◽  
A. Akujärvi ◽  
X. Wu ◽  
...  

Abstract. Soil organic carbon (SOC) is the largest terrestrial carbon pool and sensitive to land use and cover change; its dynamics is critical for carbon cycling in terrestrial ecosystems and the atmosphere. In this study, we combined a modeling approach and field measurements to examine the temporal dynamics of SOC following afforestation of former arable land at six sites under different climatic conditions in the Loess Plateau during 1980–2010. The results showed that the measured mean SOC increased to levels higher than before afforestation when taking the last measurements (i.e., at age 25 to 30 yr), although it decreased in the first few years at the wetter sites. The accumulation rates of SOC were 1.58 to 6.22% yr–1 in the upper 20 cm and 1.62 to 5.15% yr–1 in the upper 40 cm of soil. The simulations reproduced the basic characteristics of measured SOC dynamics, suggesting that litter input and climatic factors (temperature and precipitation) were the major causes for SOC dynamics and the differences among the sites. They explained 88–96, 48–86 and 57–74% of the variations in annual SOC changes at the soil depths of 0–20, 0–40, and 0–100 cm, respectively. Notably, the simulated SOC decreased during the first few years at all the sites, although the magnitudes of decreases were small at the drier sites. This suggested that the modeling may be advantageous in capturing SOC changes at finer time scale. The discrepancy between the simulation and measurement was a result of uncertainties in model structure, data input, and sampling design. Our findings indicated that afforestation promoted soil carbon sequestration at the study sites, which is favorable for further restoration of the vegetation and environment. Afforestation activities should decrease soil disturbances to reduce carbon release in the early stage. The long-term strategy for carbon fixation capability of the plantations should also consider the climate and site conditions, species adaptability, and successional stage of recovery.


Sign in / Sign up

Export Citation Format

Share Document