Development of a double-layer EPS-ASM2d model to illustrate the effect on mainstream biological phosphorus system in side-stream phosphorus recovery process

2021 ◽  
Vol 772 ◽  
pp. 144961
Author(s):  
Xuehui Zu ◽  
Jun Nan ◽  
Li He ◽  
Qiliang Xiao ◽  
Bohan Liu
2014 ◽  
Vol 70 (9) ◽  
pp. 1441-1447 ◽  
Author(s):  
H. M. Zou ◽  
X. W. Lu ◽  
T. Li

The aim of this study was to assess the effect of side-stream ratio (SSR) on performance of phosphorus (P) removal and recovery in a novel process linking biological nutrients removal (BNR) and induced crystallization (IC). Results showed that P removal efficiency was significantly enhanced when given an appropriate SSR, resulting in effluent P concentrations decreasing from 0.75 to 0.39 mg/L with an increase of SSR from 0 to 35%, where a maximum of 7.19 mg/L P recovery amount was obtained at 35% of SSR. Increasing the SSR can favor the P recovery, while an excessively high SSR (more than 35%) would have a negative effect on the subsequent biological P removal in the BNR-IC system. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis showed that in total, 11 DGGE bands of highest species richness were visually detected and significant changes in microbial community structure were found, with SSR variations ranging from 0 to 55%. Moreover, an increase in SSR can cause an increase in microbial community biodiversity; where microbial populations correspond to the 11 bands, they were generally classified into five different phyla or classes (Beta-, Gamma-, and Deltaproteobacteria, as well as Clostridia and Flavobacteria) based on the evolutionary tree analysis.


2020 ◽  
pp. 102-138
Author(s):  
Dafne Crutchik Pedemonte ◽  
Nicola Frison ◽  
Carlota Tayà ◽  
Sergio Ponsa ◽  
Francesco Fatone

This chapter gives an overview on the main technologies for nutrient removal from industrial wastewater by focusing on principles and operational parameters of real applications. A plethora of technologies can achieve the nutrients removal from wastewater depending mainly on their concentration and forms; however, biological nitrification and denitrification and chemical precipitation are the most common processes used today to remove nitrogen and phosphorus, respectively. Stripping, adsorption and membrane based processes for nutrients recovery can be economically viable only when nitrogen concentration is higher than 1.5-2 gN/L. On the other hand, phosphorus recovery should always be pursued and struvite crystalization is the most common option that should be evaluated together with biological phosphorus accumulation in sludge or plants for the following post-processing and valorization.


2018 ◽  
Vol 53 ◽  
pp. 04023
Author(s):  
Mengfei Hu ◽  
Liping Qiu ◽  
Yan Wang

Phosphorus is one of the essential elements needed for the growth and reproduction of any organism. To improve the efficiency of biological phosphorus removal in sewage, it is very important to grasp the precise mechanism of biological phosphorus removal. Yeast is a single cell fungus and has a unique advantage in sewage treatment. Recent studies in the different types of yeast have revealed that there is a phosphate-responsive signal transduction (PHO) pathway to regulate phosphate-responsive genes for controlling phosphate absorption. In this review, the metabolic mechanisms and protein-protein interactions associated with the PHO pathway are highlighted firstly, and then several examples about improving the phosphorus removal efficiency of sewage by inducing gene mutation in yeast phosphorus metabolism was introduced. The aim is to provide new ideas for the realization of high-efficiency phosphorus recovery in nature.


Author(s):  
Haiming ZOU ◽  
Xiwu LU ◽  
Ting LI

An excessive discharge of phosphorus from wastewater to water bodies may potentially contribute to eutrophication. On the other hand, mineral phosphorus resources will be depleted in the near future, because of difficulty to automatically recycle from water to land, unlike nitrogen. A new process for nutrients removal coupled with phosphorus recovery was proposed in this study by combining biological nutrients removal (BNR) with induced crystallization (IC), BNR-IC for short later, differently from conventional phosphorus recovery process. Our results showed that the BNR-IC system can maintain not only high and stable carbon, nitrogen and phosphorus removal efficiencies, all presenting above 90%, but also good phosphorus recovery performance from synthetic domestic wastewater, displaying about 70.2% of phosphorus recovery rate. When the COD, TN, NH4–N and P concentrations of 250 mg L−1, 42 mg L−1, 40 mg L−1, and 10 mg L−1, respectively were given in the influent, a stable removal efficiencies of 92.5% COD, 78.6% TN, 85.9% NH4–N and 95.2% P were obtained for the BNR-IC process and correspondingly the COD, TN, NH4–N and P concentrations of 18.75 mg L−1, 8.99 mg L−1, 5.64 mg L−1, 0.42 mg L−1 were monitored in the effluent, meeting the Chinese National Class I (grade A) Sewage Discharge Standard. Analyses of SEM and EDS, moreover, also demonstrated that the surface of seed crystal (calcite used here) was completely covered by hydroxyl calcium phosphate (HAP) produced during the induced crystallization process to recover phosphorus. Although our study involved only a small-scale trial, the proposed BNR-IC process here may be a promising technology, and can potentially aid in improvement of the effluent quality from WWTP and in recycle of mineral phosphorus resources when applied to practice.


Sign in / Sign up

Export Citation Format

Share Document