Organic Matter Decomposition at a Constructed Fen in the Athabasca Oil Sands Region: Effect of substrate type and environmental conditions

Author(s):  
Matthew Coulas ◽  
Christopher Parsons ◽  
Saraswati Saraswati ◽  
Maria Strack
2018 ◽  
Vol 98 (3) ◽  
pp. 519-530 ◽  
Author(s):  
Sebastian T. Dietrich ◽  
M. Derek MacKenzie

Restoring ecosystem function after oil sands surface mining involves reestablishing the biotic and abiotic ecosystem components that affect biogeochemical cycles and fluxes. In boreal forest ecosystems, pyrogenic carbon is a native soil component that affects a variety of biogeochemical parameters and biochar is its human-made analog. To evaluate the benefits of biochar amendment to reclamation cover soils, we compared characteristics and function of peat–mineral mix (PM) and forest floor–mineral mix (FFM) with and without biochar in an 18 wk greenhouse study. We assessed nutrient bioavailability (NO3, NH4, P, K, S, Mg, and Ca), foliar nutrient concentrations (N, P, K, S, Mg, Ca, Na, and Mo), soil respiration, rhizosphere polysaccharide concentration, soil organic matter stability, and Populus tremuloides Michx. seedling growth. Seedling growth increased significantly on PM cover soil with biochar. Biochar improved K nutritional status and potentially interacted with Na bioavailability in PM, affecting growth. Soil respiration significantly decreased in PM with biochar and increased in FFM. Soil organic matter stability was positively correlated with seedling growth and increased with biochar. Our findings suggest that biochar may have a significant positive effect on upland forest reclamation in the Athabasca oil sands region, especially on sites that are reclaimed with PM.


CATENA ◽  
2018 ◽  
Vol 165 ◽  
pp. 425-433 ◽  
Author(s):  
Olena Volik ◽  
Richard M. Petrone ◽  
Roland I. Hall ◽  
Merrin L. Macrae ◽  
Corey M. Wells ◽  
...  

2021 ◽  
pp. 117014
Author(s):  
Narumol Jariyasopit ◽  
Tom Harner ◽  
Cecilia Shin ◽  
Richard Park

2018 ◽  
Vol 18 (10) ◽  
pp. 7361-7378 ◽  
Author(s):  
Sabour Baray ◽  
Andrea Darlington ◽  
Mark Gordon ◽  
Katherine L. Hayden ◽  
Amy Leithead ◽  
...  

Abstract. Aircraft-based measurements of methane (CH4) and other air pollutants in the Athabasca Oil Sands Region (AOSR) were made during a summer intensive field campaign between 13 August and 7 September 2013 in support of the Joint Canada–Alberta Implementation Plan for Oil Sands Monitoring. Chemical signatures were used to identify CH4 sources from tailings ponds (BTEX VOCs), open pit surface mines (NOy and rBC) and elevated plumes from bitumen upgrading facilities (SO2 and NOy). Emission rates of CH4 were determined for the five primary surface mining facilities in the region using two mass-balance methods. Emission rates from source categories within each facility were estimated when plumes from the sources were spatially separable. Tailings ponds accounted for 45 % of total CH4 emissions measured from the major surface mining facilities in the region, while emissions from operations in the open pit mines accounted for ∼ 50 %. The average open pit surface mining emission rates ranged from 1.2 to 2.8 t of CH4 h−1 for different facilities in the AOSR. Amongst the 19 tailings ponds, Mildred Lake Settling Basin, the oldest pond in the region, was found to be responsible for the majority of tailings ponds emissions of CH4 (> 70 %). The sum of measured emission rates of CH4 from the five major facilities, 19.2 ± 1.1 t CH4 h−1, was similar to a single mass-balance determination of CH4 from all major sources in the AOSR determined from a single flight downwind of the facilities, 23.7 ± 3.7 t CH4 h−1. The measured hourly CH4 emission rate from all facilities in the AOSR is 48 ± 8 % higher than that extracted for 2013 from the Canadian Greenhouse Gas Reporting Program, a legislated facility-reported emissions inventory, converted to hourly units. The measured emissions correspond to an emissions rate of 0.17 ± 0.01 Tg CH4 yr−1 if the emissions are assumed as temporally constant, which is an uncertain assumption. The emission rates reported here are relevant for the summer season. In the future, effort should be devoted to measurements in different seasons to further our understanding of the seasonal parameters impacting fugitive emissions of CH4 and to allow for better estimates of annual emissions and year-to-year variability.


Sign in / Sign up

Export Citation Format

Share Document