Solid state anaerobic digestion of food waste and sewage sludge: Impact of mixing ratios and temperature on microbial diversity, reactor stability and methane yield

Author(s):  
Vijayalakshmi Arelli ◽  
Naveen Kumar Mamindlapelli ◽  
Sameena Begum ◽  
Sudharshan Juntupally ◽  
Gangagni Rao Anupoju
2012 ◽  
Vol 485 ◽  
pp. 306-309
Author(s):  
Li Hong Wang ◽  
Qun Hui Wang ◽  
Wei Wei Cai

Solid-state anaerobic digestion (SSAD) of distiller’s grains (DG) and kitchen waste (KW) for biogas was investigated. Six DG to KW ratios of 10/1, 8/1, 6/1, 4/1, 1/0, and 0/1 was used. The results showed that in 48 digestion days the co-digestion with DG to KW ratio of 8:1 obtained the highest methane yield of 159.74mL/gTS, TS and VS reductions of 58.7% and 71.8%, hemicellulase, cellulose and lignin reductions of 46.7%, 45.4% and 4.0%. Compared to mono-digestions of DG or KW, co-digestion of DG and FW had a good synergistic effect. It indicated that SSAD of cellulosic-based waste and food waste could be one of the options for efficient biogas production and waste treatment


2013 ◽  
Vol 777 ◽  
pp. 139-142
Author(s):  
Li Han ◽  
Ru Ying Li ◽  
Min Ji

In order to improve the methane yield and removal efficiency of organic matters in anaerobic sludge digestion, effects of addition of food waste were investigated at mesophilic condition. Results showed that the optimal TS ratio between sewage sludge and food waste was 4:1, with a methane yield of 592.7 ml/g-VS, methane content of 66.84% and the VS removal efficiency of 31%, which were 47%, 50% and 55% higher than those of sole sludge digestion, respectively.


Author(s):  
Siti Mariam Sulaiman ◽  
◽  
Roslinda Seswoya ◽  

Sewage sludge and food waste; are organic wastes suitable for the anaerobic digestion. However, the digestion of sewage sludge and food waste as solely substrate is having a drawback in term of methane yield. Therefore, many researchers combined these two wastes as a co-substrate and used in co-digestion. This study focused to evaluate the anaerobic co-digestion of domestic sewage sludge (in form of primary and secondary sewage sludge) with food waste under mesophilic temperature in a batch assay. Two series of batch biochemical methane potential (BMP) test were conducted using the Automatic Methane Potential Test System (AMPTS II). Each set are labelled with BMP 1(PSS:FW) and BMP 2 (SSS:FW). The BMP tests were monitored automatically until the methane production is insignificant. Using the data observed in the laboratory, the kinetic paremeters were calculated. Also, the First-order and Modified Gompertz modeling were included to predict the anaerobic digestion performance. Finding showed that BMP 1(PSS:FW) have better performance with respect to the higher ultimate methane yield and methane production rate as compared to BMP 2 (SSS:FW). Besides, the kinetic parameters from laboratory work and modeling were slightly different. In which the kinetic paremetes from modelling is lesser. However, both modelling are well fitted to the experimental data with high correlation coefficient, R2 ranged from 0.993 to 0.997.


Author(s):  
Kai Schumüller ◽  
Dirk Weichgrebe ◽  
Stephan Köster

AbstractTo tap the organic waste generated onboard cruise ships is a very promising approach to reduce their adverse impact on the maritime environment. Biogas produced by means of onboard anaerobic digestion offers a complementary energy source for ships’ operation. This report comprises a detailed presentation of the results gained from comprehensive investigations on the gas yield from onboard substrates such as food waste, sewage sludge and screening solids. Each person onboard generates a total average of about 9 kg of organic waste per day. The performed analyses of substrates and anaerobic digestion tests revealed an accumulated methane yield of around 159 L per person per day. The anaerobic co-digestion of sewage sludge and food waste (50:50 VS) emerged as particularly effective and led to an increased biogas yield by 24%, compared to the mono-fermentation. In the best case, onboard biogas production can provide an energetic output of 82 W/P, on average covering 3.3 to 4.1% of the total energy demand of a cruise ship.


Author(s):  
Kunwar Paritosh ◽  
Vinod Kumar ◽  
Nidhi Pareek ◽  
Dinabandhu Sahoo ◽  
Yadira Bajon Fernandez ◽  
...  

2017 ◽  
Vol 244 ◽  
pp. 996-1005 ◽  
Author(s):  
Dalal E. Algapani ◽  
Jing Wang ◽  
Wei Qiao ◽  
Min Su ◽  
Andrea Goglio ◽  
...  

2017 ◽  
Vol 16 (2) ◽  
pp. 347-360 ◽  
Author(s):  
Dimitrios Komilis ◽  
Raquel Barrena ◽  
Rafaela Lora Grando ◽  
Vasilia Vogiatzi ◽  
Antoni Sánchez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document