scholarly journals Unveiling the changes in urban atmospheric CO2 in the time of COVID-19 pandemic: A case study of Florence (Italy)

Author(s):  
Stefania Venturi ◽  
Antonio Randazzo ◽  
Franco Tassi ◽  
Beniamino Gioli ◽  
Antonella Buccianti ◽  
...  
Keyword(s):  
2014 ◽  
Vol 14 (16) ◽  
pp. 23681-23709
Author(s):  
S. M. Miller ◽  
I. Fung ◽  
J. Liu ◽  
M. N. Hayek ◽  
A. E. Andrews

Abstract. Estimates of CO2 fluxes that are based on atmospheric data rely upon a meteorological model to simulate atmospheric CO2 transport. These models provide a quantitative link between surface fluxes of CO2 and atmospheric measurements taken downwind. Therefore, any errors in the meteorological model can propagate into atmospheric CO2 transport and ultimately bias the estimated CO2 fluxes. These errors, however, have traditionally been difficult to characterize. To examine the effects of CO2 transport errors on estimated CO2 fluxes, we use a global meteorological model-data assimilation system known as "CAM–LETKF" to quantify two aspects of the transport errors: error variances (standard deviations) and temporal error correlations. Furthermore, we develop two case studies. In the first case study, we examine the extent to which CO2 transport uncertainties can bias CO2 flux estimates. In particular, we use a common flux estimate known as CarbonTracker to discover the minimum hypothetical bias that can be detected above the CO2 transport uncertainties. In the second case study, we then investigate which meteorological conditions may contribute to month-long biases in modeled atmospheric transport. We estimate 6 hourly CO2 transport uncertainties in the model surface layer that range from 0.15 to 9.6 ppm (standard deviation), depending on location, and we estimate an average error decorrelation time of ∼2.3 days at existing CO2 observation sites. As a consequence of these uncertainties, we find that CarbonTracker CO2 fluxes would need to be biased by at least 29%, on average, before that bias were detectable at existing non-marine atmospheric CO2 observation sites. Furthermore, we find that persistent, bias-type errors in atmospheric transport are associated with consistent low net radiation, low energy boundary layer conditions. The meteorological model is not necessarily more uncertain in these conditions. Rather, the extent to which meteorological uncertainties manifest as persistent atmospheric transport biases appears to depend, at least in part, on the energy and stability of the boundary layer. Existing CO2 flux studies may be more likely to estimate inaccurate regional fluxes under those conditions.


2010 ◽  
Vol 10 (2) ◽  
pp. 4271-4304 ◽  
Author(s):  
I. Xueref-Remy ◽  
P. Bousquet ◽  
C. Carouge ◽  
L. Rivier ◽  
N. Viovy ◽  
...  

Abstract. Our ability to predict future climate change relies on our understanding of current and future CO2 fluxes, particularly at the scale of regions (100–1000 km). Nowadays, CO2 regional sources and sinks are still poorly known. Inverse transport modeling, a method often used to quantify these fluxes, relies on atmospheric CO2 measurements. One of the main challenge for the transport models used in the inversions is to reproduce properly CO2 vertical gradients between the boundary layer and the free troposphere, as these gradients impact on the partitioning ot the calculated fluxes between the different model regions. Vertical CO2 profiles are very well suited to assess the performances of the models. In this paper, we conduct a comparison between observed and modeled CO2 profiles recorded during two CAATER campaigns that occurred in May 2001 and October 2002 over western Europe, and that we have described in a companion paper. We test different combinations between a global transport model (LMDZt), a mesoscale transport model (CHIMERE), and different sets of biospheric fluxes, those latter all chosen to have a diurnal cycle (CASA, SiB2 and ORCHIDEE). The vertical profile comparison shows that: (1) in most cases the influence of the biospheric flux is small but sometimes not negligeable, ORCHIDEE giving the best results in the present study; (2) LMDZt is most of the time too diffusive, as it simulates a too high boundary layer height; (3) CHIMERE reproduces better the observed gradients between the boundary layer and the free troposphere, but is sometimes too variable and gives rise to incoherent structures. We conclude there is a need for more vertical profiles to conduct further studies that will help to improve the parameterization of vertical transport in the models used for CO2 flux inversions. Furthermore, we use a modeling method to quantify CO2 fluxes at the regional scale from any observing point, coupling influence functions from the transport model LMDZt (that works quite well at the synoptic scale) with information on the space-time distribution of fluxes. This modeling method is compared to a dual tracer method (the so-called Radon method) for a case study on 25 May 2001 during which simultaneous well-correlated in-situ CO2 and Radon 222 measurements have been collected. Both methods give a similar flux within the Radon 222 method uncertainty (35%), that is an atmospheric CO2 sink of −4.2 to −4.4 gC m−2 day−1. We have estimated the uncertainty of the modeling method to be at least 33% when considering averages, even much more on individual events. This method allows the determination of the area that contributed to the CO2 observed concentration. In our case, the observation point located at 1700 m a.s.l. in the North of France, is influenced by an area of 1500×700 km2 that covers the Benelux region, part of Germany and western Poland. Furthermore, this method allows deconvolution between the different contributing fluxes. In this case study, the biospheric sink contributes for 73% of the total flux, fossil fuel emissions for 27%, the oceanic flux being negligeable. However, the uncertainties of the influence function method must be better assessed. This could be possible by applying it to other cases where the calculated fluxes can be checked independantly, for example at tall towers where simultaneous CO2 and Radon 222 measurements can be conducted. The use of optimized fluxes (from atmospheric inversions) and of mesoscale models for atmospheric transport may also significantly reduce the uncertainties.


2011 ◽  
Vol 11 (12) ◽  
pp. 5673-5684 ◽  
Author(s):  
I. Xueref-Remy ◽  
P. Bousquet ◽  
C. Carouge ◽  
L. Rivier ◽  
P. Ciais

Abstract. Our ability to predict future climate change relies on our understanding of current and future CO2 fluxes, particularly on a regional scale (100–1000 km). CO2 regional sources and sinks are still poorly understood. Inverse transport modeling, a method often used to quantify these fluxes, relies on atmospheric CO2 measurements. One of the main challenges for the transport models used in the inversions is to properly reproduce CO2 vertical gradients between the boundary layer and the free troposphere, as these gradients impact on the partitioning of the calculated fluxes between the different model regions. Vertical CO2 profiles are very well suited to assess the performances of the models. In this paper, we conduct a comparison between observed and modeled CO2 profiles recorded during two CAATER campaigns that occurred in May 2001 and October 2002 over Western Europe, as described in a companion paper. We test different combinations between a global transport model (LMDZt), a mesoscale transport model (CHIMERE), and different sets of biospheric fluxes, all chosen with a diurnal cycle (CASA, SiB2 and ORCHIDEE). The vertical profile comparison shows that: 1) in most cases the influence of the biospheric flux is small but sometimes not negligible, ORCHIDEE giving the best results in the present study; 2) LMDZt is most of the time too diffuse, as it simulates a too high boundary layer height; 3) CHIMERE better reproduces the observed gradients between the boundary layer and the free troposphere, but is sometimes too variable and gives rise to incoherent structures. We conclude there is a need for more vertical profiles to conduct further studies to improve the parameterization of vertical transport in the models used for CO2 flux inversions. Furthermore, we use a modeling method to quantify CO2 fluxes at the regional scale from a chosen observing point, coupling influence functions from the transport model LMDZt (that works quite well at the synoptic scale) with information on the space-time distribution of fluxes. This modeling method is compared to a dual tracer method (the so-called Radon method) for a case study on 25 May 2001 during which simultaneous well-correlated in situ CO2 and Radon 222 measurements have been collected. Both methods give a similar result: a flux within the Radon 222 method uncertainty (35%), that is an atmospheric CO2 sink of −4.2 to −4.4 gC m−2 day−1. We have estimated the uncertainty of the modeling method to be at least 33% on average, and even more for specific individual events. This method allows the determination of the area that contributed to the CO2 observed concentration. In our case, the observation point located at 1700 m a.s.l. in the north of France, is influenced by an area of 1500×700 km2 that covers the Benelux region, part of Germany and western Poland. Furthermore, this method allows deconvolution between the different contributing fluxes. In this case study, the biospheric sink contributes 73% of the total flux, fossil fuel emissions for 27%, the oceanic flux being negligible. However, the uncertainties of the influence function method need to be better assessed. This could be possible by applying it to other cases where the calculated fluxes can be checked independently, for example at tall towers where simultaneous CO2 and Radon 222 measurements can be conducted. The use of optimized fluxes (from atmospheric inversions) and of mesoscale models for atmospheric transport may also significantly reduce the uncertainties.


2015 ◽  
Vol 15 (5) ◽  
pp. 2903-2914 ◽  
Author(s):  
S. M. Miller ◽  
M. N. Hayek ◽  
A. E. Andrews ◽  
I. Fung ◽  
J. Liu

Abstract. Estimates of CO2 fluxes that are based on atmospheric measurements rely upon a meteorology model to simulate atmospheric transport. These models provide a quantitative link between the surface fluxes and CO2 measurements taken downwind. Errors in the meteorology can therefore cause errors in the estimated CO2 fluxes. Meteorology errors that correlate or covary across time and/or space are particularly worrisome; they can cause biases in modeled atmospheric CO2 that are easily confused with the CO2 signal from surface fluxes, and they are difficult to characterize. In this paper, we leverage an ensemble of global meteorology model outputs combined with a data assimilation system to estimate these biases in modeled atmospheric CO2. In one case study, we estimate the magnitude of month-long CO2 biases relative to CO2 boundary layer enhancements and quantify how that answer changes if we either include or remove error correlations or covariances. In a second case study, we investigate which meteorological conditions are associated with these CO2 biases. In the first case study, we estimate uncertainties of 0.5–7 ppm in monthly-averaged CO2 concentrations, depending upon location (95% confidence interval). These uncertainties correspond to 13–150% of the mean afternoon CO2 boundary layer enhancement at individual observation sites. When we remove error covariances, however, this range drops to 2–22%. Top-down studies that ignore these covariances could therefore underestimate the uncertainties and/or propagate transport errors into the flux estimate. In the second case study, we find that these month-long errors in atmospheric transport are anti-correlated with temperature and planetary boundary layer (PBL) height over terrestrial regions. In marine environments, by contrast, these errors are more strongly associated with weak zonal winds. Many errors, however, are not correlated with a single meteorological parameter, suggesting that a single meteorological proxy is not sufficient to characterize uncertainties in atmospheric CO2. Together, these two case studies provide information to improve the setup of future top-down inverse modeling studies, preventing unforeseen biases in estimated CO2 fluxes.


2021 ◽  
Vol 249 ◽  
pp. 105346
Author(s):  
Peng Wang ◽  
Weijian Zhou ◽  
Zhenchuan Niu ◽  
Xiaohu Xiong ◽  
Shugang Wu ◽  
...  

2014 ◽  
Vol 38 (01) ◽  
pp. 102-129
Author(s):  
ALBERTO MARTÍN ÁLVAREZ ◽  
EUDALD CORTINA ORERO

AbstractUsing interviews with former militants and previously unpublished documents, this article traces the genesis and internal dynamics of the Ejército Revolucionario del Pueblo (People's Revolutionary Army, ERP) in El Salvador during the early years of its existence (1970–6). This period was marked by the inability of the ERP to maintain internal coherence or any consensus on revolutionary strategy, which led to a series of splits and internal fights over control of the organisation. The evidence marshalled in this case study sheds new light on the origins of the armed Salvadorean Left and thus contributes to a wider understanding of the processes of formation and internal dynamics of armed left-wing groups that emerged from the 1960s onwards in Latin America.


2020 ◽  
Vol 43 ◽  
Author(s):  
Michael Lifshitz ◽  
T. M. Luhrmann

Abstract Culture shapes our basic sensory experience of the world. This is particularly striking in the study of religion and psychosis, where we and others have shown that cultural context determines both the structure and content of hallucination-like events. The cultural shaping of hallucinations may provide a rich case-study for linking cultural learning with emerging prediction-based models of perception.


Sign in / Sign up

Export Citation Format

Share Document