Chemical characteristics and sources of nitrogen-containing organic compounds at a regional site in the North China Plain during the transition period of autumn and winter

Author(s):  
Meng Wang ◽  
Qiyuan Wang ◽  
Steven Sai Hang Ho ◽  
Huan Li ◽  
Renjian Zhang ◽  
...  
2008 ◽  
Vol 8 (19) ◽  
pp. 5889-5898 ◽  
Author(s):  
W. Lin ◽  
X. Xu ◽  
X. Zhang ◽  
J. Tang

Abstract. Regional ozone pollution has become one of the top environmental concerns in China, especially in those economically vibrant and densely populated regions, such as North China region including Beijing. To address this issue, surface ozone and ancillary data over the period 2004–2006 from the Shangdianzi Regional Background Station in north China were analyzed. Due to the suitable location and valley topography of the site, transport of pollutants from the North China Plain was easily observed and quantified according to surface wind directions. Regional (polluted) and background (clean) ozone concentrations were obtained by detailed statistic analysis. Contribution of pollutants from North China Plain to surface ozone at SDZ was estimated by comparing ozone concentrations observed under SW wind conditions and that under NE wind conditions. The average daily accumulated ozone contribution was estimated to be 240 ppb·hr. The average regional contributions to surface ozone at SDZ from the North China Plain were 21.8 ppb for the whole year, and 19.2, 28.9, 25.0, and 10.0 ppb for spring, summer, autumn, and winter, respectively. The strong ozone contribution in summer led to disappearance of the spring ozone maximum phenomenon at SDZ under winds other than from the NNW to E sectors. The emissions of nitrogen oxide in the North China plain cause a decrease in ozone concentrations in winter.


2008 ◽  
Vol 8 (3) ◽  
pp. 9139-9165 ◽  
Author(s):  
W. Lin ◽  
X. Xu ◽  
X. Zhang ◽  
J. Tang

Abstract. Regional ozone pollution has become one of the top environmental concerns in China, especially in those economically vibrant and densely populated regions, such as North China region including Beijing. To address this issue, surface ozone and ancillary data over the period 2004–2006 from the Shangdianzi Regional Background Station in north China were analyzed. Due to the suitable location and valley topography of the site, transport of pollutants from the North China Plain was easily observed and quantified according to surface wind directions. Regional (polluted) and natural (clean) background ozone concentrations were obtained by detailed statistic analysis. Contribution of pollutants from North China Plain to surface ozone at SDZ was estimated by comparing ozone concentrations observed under SW wind conditions and that under NE wind conditions. The average daily accumulated ozone contribution was estimated to be 240 ppb·hr. The average regional contributions to surface ozone at SDZ from the North China Plain were 21.8 ppb for the whole year, and 19.2, 28.9, 25.0, and 10.0 ppb for spring, summer, autumn, and winter, respectively. The strong ozone contribution in summer led to disappearance of the spring ozone maximum phenomenon at SDZ under winds other than from the WNN to E sectors. High winter NOx concentrations in the North China Plain caused negative ozone contribution in winter.


2020 ◽  
Author(s):  
Linlin Liang ◽  
Guenter Engling ◽  
Chang Liu ◽  
Wanyun Xu ◽  
Xuyan Liu ◽  
...  

Abstract. Biomass burning (BB) activities are ubiquitous in China, especially in North China, where there is an enormous rural population and winter heating custom. In order to better understand their impacts on aerosol chemical characteristics in rural and agricultural areas of the North China Plain, BB tracers (i.e., levoglucosan (LG), mannosan (MN) and potassium (K+)), as well as other chemical components were quantified at a rural site (Gucheng, GC) from 15 October to 30 November, during a transition heating season, when the field burning of agricultural residues was becoming intense. The measured daily average PM2.5 concentrations of LG, MN and K+ during this study were 0.79 ± 0.75 μg m−3, 0.03 ± 0.03 μg m−3 and 1.52 ± 0.62 μg m−3. Due to the planetary boundary layer development, carbonaceous components and BB tracers showed higher levels at nighttime than daytime, while OM and secondary inorganic ions were enhanced during daytime, likely due to enhanced photochemical activity. An episode with high levels of BB tracers was encountered at the end of October, 2016, with high LG at 4.37 μg m−3. Based on the comparison of chemical components during different BB periods, it appeared that biomass combustion can obviously elevate carbonaceous components levels, whereas there seems to be essentially no effect on secondary inorganic ions in the ambient air. Moreover, the LG / MN ratios in different BB periods were consistent, while the LG / K+ ratio during intensive BB periods was significantly elevated at times, with K+ not increasing as much as LG during intensive BB episodes. This indicated that there were other sources of K+ in the study region, such as fireworks, fertilizer use, or soil resuspension, which don't have variable contributions of K+ during the intensive BB periods; however, local soft wood and vegetation combustion can't be excluded, which have efficient formation of levoglucosan during flaming fires.


Sign in / Sign up

Export Citation Format

Share Document