scholarly journals Chemical Characteristics of Water-Soluble Ions in Particulate Matter in Three Metropolitan Areas in the North China Plain

PLoS ONE ◽  
2014 ◽  
Vol 9 (12) ◽  
pp. e113831 ◽  
Author(s):  
Xu Dao ◽  
Zhen Wang ◽  
Yibing Lv ◽  
Enjiang Teng ◽  
Linlin Zhang ◽  
...  
2016 ◽  
Vol 16 (15) ◽  
pp. 10097-10109 ◽  
Author(s):  
Pengfei Liu ◽  
Chenglong Zhang ◽  
Yujing Mu ◽  
Chengtang Liu ◽  
Chaoyang Xue ◽  
...  

Abstract. The North China Plain (NCP), which includes Beijing, is currently suffering from severe haze events due to a high pollution level of PM2.5. To mitigate the serious pollution problem, identification of the sources of PM2.5 is urgently needed for the effective control measures. Daily samples of PM2.5 were collected in Beijing city and in a rural area in Baoding, Hebei Province through the year of 2014, and the seasonal variation of water-soluble ions (WSIs) in PM2.5 was comprehensively analysed to determine their possible sources. The results indicated that the periodic emissions from farmers' activities made a significant contribution to the atmospheric WSIs in Beijing. The relatively high concentration of K+ in winter and autumn at the two sampling sites confirmed that crop straw burning contributed to atmospheric K+ in Beijing. The remarkable elevation of Cl− at the two sampling sites as well as the evident increase of the Cl− ∕ K+ ratio and the Cl− proportion in WSIs during the winter in Beijing could be ascribed to coal combustion for heating by farmers. The unusually high ratio of Cl− to Na+ in summer, the obviously high concentrations of Cl− in the rural sampling site and the elevation of Cl− proportion in WSIs in Beijing during the maize fertilization could be explained by the use of the prevailing fertilizer of NH4Cl in the vast area of NCP. The abnormally high concentrations of Ca2+ at the two sampling sites and the elevation of Ca2+ proportion during the period of the maize harvest and soil ploughing in Beijing provided convincing evidence that the intensive agricultural activities in autumn contributed to the regional mineral dust. The most serious pollution episodes in autumn were coincident with significant elevation of Ca2+, indicating that the mineral dust emission from the harvest and soil ploughing not only increased the atmospheric concentrations of the primary pollutants, but also greatly accelerated formation of sulfate and nitrate through heterogeneous reactions of NO2 and SO2 on the mineral dust. The backward trajectories also indicated that the highest concentrations of WSIs usually occurred in the air parcel from southwest–south regions, which have a high density of farmers. In addition, the values of nitrogen oxidation ratio (NOR) and the sulfur oxidation ratio (SOR) were found to be much greater under haze days than under non-haze days, implying that formation of sulfate and nitrate was greatly accelerated through heterogeneous or multiphase reactions of NO2 and SO2 on PM2.5.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hongya Niu ◽  
Zhaoce Liu ◽  
Wei Hu ◽  
Wenjing Cheng ◽  
Mengren Li ◽  
...  

Purpose Severe airborne particulate pollution frequently occurs over the North China Plain (NCP) region in recent years. To better understand the characteristics of carbonaceous components in particulate matter (PM) over the NCP region. Design/methodology/approach PM samples were collected at a typical area affected by industrial emissions in Handan, in January 2016. The concentrations of organic carbon (OC) and elemental carbon (EC) in PM of different size ranges (i.e. PM2.5, PM10 and TSP) were measured. The concentrations of secondary organic carbon (SOC) were estimated by the EC tracer method. Findings The results show that the concentration of OC ranged from 14.9 μg m−3 to 108.4 μg m−3, and that of EC ranged from 4.0 μg m−3 to 19.4μg m−3, when PM2.5 changed from 58.0μg m−3 to 251.1μg m−3 during haze days, and the carbonaceous aerosols most distributed in PM2.5 rather than large fraction. The concentrations of OC and EC PM2.5 correlated better (r = 0.7) than in PM2.5−10 and PM>10, implying that primary emissions were dominant sources of OC and EC in PM2.5. The mean ratios of OC/EC in PM2.5, PM2.5–10 and PM>10 were 4.4 ± 2.1, 3.6 ± 0.9 and 1.9 ± 0.7, respectively. Based on estimation, SOC accounted for 16.3%, 22.0% and 9.1% in PM2.5, PM2.5–10 and PM>10 respectively. Originality/value The ratio of SOC/OC (48.2%) in PM2.5 was higher in Handan than those (28%–32%) in other megacities, e.g. Beijing, Tianjin and Shijiazhuang in the NCP, suggesting that the formation of SOC contributed significantly to OC. The mean mass absorption efficiencies of EC (MACEC) in PM10 and TSP were 3.4 m2 g−1 (1.9–6.6 m2 g−1) and 2.9 m2 g−1 (1.6–5.6 m2 g−1), respectively, both of which had similar variation patterns to those of OC/EC and SOC/OC.


2022 ◽  
pp. 112671
Author(s):  
Aifang Gao ◽  
Junyi Wang ◽  
James Poetzscher ◽  
Shaorong Li ◽  
Boyi Gao ◽  
...  

2013 ◽  
Vol 13 (16) ◽  
pp. 8285-8302 ◽  
Author(s):  
K. Kawamura ◽  
E. Tachibana ◽  
K. Okuzawa ◽  
S. G. Aggarwal ◽  
Y. Kanaya ◽  
...  

Abstract. Aerosol (TSP) samples were collected at the summit of Mount Tai (elevation: 1534 m a.s.l., 36.25° N, 117.10° E) located in the North China Plain using a high-volume air sampler and pre-combusted quartz filters. Sampling was conducted on day/night or 3 h basis in the period from 29 May to 28 June 2006 during the field burning of wheat straw residue and the post-burning season. The filter samples were analyzed for low-molecular-weight dicarboxylic acids, ketoacids and α-dicarbonyls using capillary gas chromatography (GC) and GC-MS employing water extraction and butyl ester derivatization. Molecular distributions of dicarboxylic acids (C2-C11, 220–6070 ng m−3) were characterized by a predominance of oxalic (C2) acid (105–3920 ng m−3) followed by succinic (C4) or malonic (C3) acid. Unsaturated aliphatic diacids, including maleic (M), isomaleic (iM) and fumaric (F) acids, were also detected together with aromatic diacids (phthalic, isophthalic and terephthalic acids). ω-oxocarboxylic acids (C2-C9, 24–610 ng m−3) were detected as the second most abundant compound class with the predominance of glyoxylic acid (11–360 ng m−3), followed by α-ketoacid (pyruvic acid, 3–140 ng m−3) and α-dicarbonyls (glyoxal, 1–230 ng m−3 and methylglyoxal, 2–120 ng m−3). We found that these levels (>6000 ng m−3 for diacids) are several times higher than those reported in Chinese megacities at ground levels. The concentrations of diacids increased from late May to early June, showing a maximum on 7 June, and then significantly decreased during the period 8–11 June, when the wind direction shifted from southerly to northerly. Similar temporal trends were found for ketocarboxylic acids and α-dicarbonyls as well as total carbon (TC) and water-soluble organic carbon (WSOC). The temporal variations of water-soluble organics were interpreted by the direct emission from the field burning of agricultural wastes (wheat straw) in the North China Plain and the subsequent photochemical oxidation of volatile and semi-volatile organic precursors emitted from field burning as well as dark ozonolysis of volatile organic compounds and other organics, accretion reactions and oxidation of nonvolatile organics such as unsaturated fatty acids. This study demonstrates that the field burning of agricultural wastes in early summer strongly influenced the air quality of the free troposphere over the North China Plain.


2019 ◽  
Vol 16 (5) ◽  
pp. 333 ◽  
Author(s):  
Martin Brüggemann ◽  
Dominik van Pinxteren ◽  
Yuchen Wang ◽  
Jian Zhen Yu ◽  
Hartmut Herrmann

Environmental contextSecondary organic aerosols account for a major fraction of atmospheric particulate matter, affecting both climate and human health. Organosulfates, abundant compounds in organic aerosols, are difficult to measure because of the lack of authentic standards. Here we quantify terpene-derived organosulfates in atmospheric particulate matter at a rural site in Germany and at the North China Plain using a combined target/non-target high-resolution mass spectrometry approach. AbstractOrganosulfates (OSs) are a ubiquitous class of compounds in atmospheric aerosol particles. However, a detailed quantification of OSs is commonly hampered because of missing authentic standards and the abundance of unknown OSs. Using a combined targeted and untargeted approach of high-resolution liquid chromatography–Orbitrap mass spectrometry (LC–Orbitrap MS), we quantified for the first time the total concentrations of known and unknown monoterpene (MT) and sesquiterpene (SQT) OSs in summertime PM10 particulate matter from field studies in rural Germany (MEL) and the North China Plain (NCP). At each site, we observed more than 50 MT-OSs, 13 of which were detectable at both sites. For both locations, median concentrations of MT-OSs were in the range of 10 to 40ngm−3, to which the 13 common MT-OSs contributed on average >50%. The main contributor to MT-OSs was C9H16O7S (MT-OS 267) with average mass concentrations of 2.23 and 6.38ngm−3 for MEL and NCP respectively. The concentrations of MT-OSs correlated with the concentrations of MT oxidation products only for MEL. For NCP, the low concentrations of MT oxidation products (i.e. typically <1ngm−3) suggested a suppression of carboxylic acid formation under high concentrations of NOx and particulate sulfate. Furthermore, we observed 17 SQT-OSs for the MEL samples, whereas 40 SQT-OSs were detected in the NCP samples. Only five of these SQT-OSs were detectable at both sites. Correspondingly, the total concentrations of SQT-OSs were larger for NCP than for MEL, which suggested large differences in the particle chemistry. In particular, aerosol acidity was found to be a key factor during SQT-OS formation, and was probably not sufficient in the PM10 from MEL.


2013 ◽  
Vol 13 (2) ◽  
pp. 3695-3734 ◽  
Author(s):  
K. Kawamura ◽  
E. Tachibana ◽  
K. Okuzawa ◽  
S. G. Aggarwal ◽  
Y. Kanaya ◽  
...  

Abstract. Aerosol (TSP) samples were collected at the summit of Mount Tai (elevation: 1534 m a.s.l., 36.25° N; 117.10° E) located in the North China Plain using a high-volume air sampler and pre-combusted quartz filters. Sampling was conducted on day/night or 3 h basis in the period from 29 May to 28 June 2006 during the field burning of wheat straw residue and the post-burning season. The filter samples were analyzed for low molecular weight dicarboxylic acids, ketoacids and α-dicarbonyls using capillary gas chromatography (GC) and GC-MS employing water extraction and butyl ester derivatization. Dicarboxylic acids (C2–C11, 220–6070 ng m−3) were characterized by a predominance of oxalic (C2) acid (105–3920 ng m−3) followed by succinic (C4) or malonic (C3) acid. Unsaturated aliphatic diacids, including maleic (M), isomaleic (iM) and fumaric (F) acid, were also detected together with aromatic diacids (phthalic, iso-phthalic and tere-phthalic acids). ω-Oxocarboxylic acids (C2–C9, 24–610 ng m−3) were detected as the second most abundant compound class with the predominance of glyoxylic acid (11–360 ng m−3), followed by α-ketoacid (pyruvic acid, 3–140 ng m−3) and α-dicarbonyls (glyoxal, 1–230 ng m−3 and methylglyoxal, 2–120 ng m−3). We found that these levels (> 6000 ng m−3 for diacids) are several times higher than those reported in Chinese megacities at ground levels. The concentrations of diacids increased from late May to early June showing a maximum on 7 June and then significantly decreased during 8–11 June when the wind direction shifted from northeasterly to northerly. Similar temporal trends were found for ketocarboxylic acids and α-dicarbonyls as well as total carbon (TC) and water-soluble organic carbon (WSOC). The temporal variations of water-soluble organics were interpreted by the direct emission from the field burning products of agricultural wastes (wheat straw) in the North China Plain and the subsequent photochemical oxidation of volatile and semi-volatile organic precursors emitted from field burning. This study demonstrates that the field burning of agricultural wastes in early summer strongly influenced the air quality of the free troposphere over the North China Plain.


Sign in / Sign up

Export Citation Format

Share Document